67. Generalized Prime Elements in a Compactly Generated l-Semigroup. II

By Kentaro MURATA^{*)} and Derbiau F. HSU^{**)}

(Comm. by Kenjiro SHODA, M. J. A., May 22, 1973)

Let L be a cl-semigroup with the conditions (1), (2), (3), (4) and (*) in [2]. Moreover we impose that the compact generator system Σ of L is closed under multiplication. The main purpose of this note is to define principal φ -components of elements in L by using φ -primes in [2], and to prove that every element of L is decomposed into their principal φ -components.

3. Principal φ -Components.

Let a be an element of L, and u an element of Σ . The (*left*) φ residual a: u of a by u is defined to be the supremum of the set of all elements x with $\varphi(u)\varphi(x) \leq a, x \in \Sigma$. We suppose throughout this note that there is such elements x for any $a \in L$ and any $u \in \Sigma$. For a, b in L, the (*left*) φ -residual a: b of a by b is defined as infimum of the a: u, where u runs over $\Sigma(b)$. Then we can prove the following properties: 1) $a \leq a'$ implies $a: b \leq a': b, b: a \geq b: a'$ and 2) $(\bigcap_{i=1}^{n} a_i): b = \bigcap_{i=1}^{n} (a_i: b)$ for $a, a', a_i, b \in L$.

Now it is not so evident that $a: b \ge a$ for a, b in L. To prove this, it is sufficient to show that $(a: u) \cup a = a: u$ for $a \in L$ and $u \in \Sigma(b)$. Take an arbitrary element x of $\Sigma((a: u) \cup a)$. Then we can choose an element y of $\Sigma(a: u)$ with $x \le y \cup a$. Since $y \le \sup \{x' \in \Sigma | \varphi(u)\varphi(x') \le a\}$, we can find a finite number of compact elements x_1, \dots, x_n such that $y \le \bigcup_{i=1}^n x_i$ and $\varphi(u)\varphi(x_i) \le a$. Then we have $x \le \bigcup_{i=1}^n x_i \cup a \le \bigcup_{i=1}^n \varphi(x_i) \cup a, \varphi(x) \le$ $\bigcup_{i=1}^n \varphi(x_i) \cup a$, and $\varphi(u)\varphi(x) \le \bigcup_{i=1}^n \varphi(u)\varphi(x_i) \cup \varphi(u)a \le a$. Therefore we obtain $(a: u) \cup a \le a, (a: u) \cup a = a$.

(3.1) Definition. Let p be a maximal φ -prime element belonging to an element a of L. The principal φ -component of a by p, denoted by a(p), is the supremum of all a:s,s runs over $\Sigma'(p)$, if $p \neq e$. If p = e, a(p) is defined to be a.

(3.2) Lemma. $a \leq a(p)$ and a(p) is φ -related to a for any maximal φ -prime element p belonging to a.

Proof. If p=e, the assertion is trivial. So we suppose that $p \neq e$. We want to prove that $a(p) \cup a = a(p)$. For the sake of this, take an arbitrary element x of $\Sigma(a(p) \cup a)$. Then since there is an element y

^{*)} Department of Mathematics, Yamaguchi University.

^{**)} Department of Mathematics, National Central University, Taiwan.

of $\Sigma(a(p))$ with $x \leq y \cup a$, we have $y \leq \sup_{s \in \Sigma'(p)} \{a: s\} = \sup_{s \in \Sigma'(p)} \{\sup [N_s]\}$ $\leq \sup [\bigvee_{s \in \Sigma'(p)} N_s]$, where N_s is the set of the compact elements u with $\varphi(s)\varphi(u) \leq a$, and \bigvee denotes the set-theoretical union. Then we can find a finite number of elements x_i of $\bigvee_{s \in \Sigma'(p)} N_s$ such that $y \leq \bigcup_{i=1}^n x_i$. Suppose that $x_i \in N_{s_i}$. Then we have $\varphi(s_i)\varphi(x_i) \le a, x \le y \cup a \le \bigcup_{i=1}^n x_i \cup a$ $\leq \bigcup_{i=1}^{n} \varphi(x_i) \cup a, \varphi(x) \leq \bigcup_{i=1}^{n} \varphi(x_i) \cup a.$ Now let M^* be the kernel of $\Sigma'(p)$. Then we can find s_i^* of M^* such that $s_i^* \leq \varphi(s_i)$ for $i=1, 2, \dots, n$. Take an element s^* of M^* such that $s^* \leq \prod_{i=1}^n s_i^*$. Then we have $\varphi(s^*) \leq \varphi(s_i)$, and $\varphi(s^*)\varphi(x) \leq \bigcup_{i=1}^n \varphi(s^*)\varphi(x_i) \cup a \leq \bigcup_{i=1}^n \varphi(s_i)\varphi(x_i) \cup a = a.$ Hence $x \le a: s^*, x \le a(p)$. We get therefore $a(p) \cup a \le a(p), a(p) \cup a = a(p)$. Next, take an arbitrary element x of $\Sigma(a(p))$. Then we can show as above that $x' \leq \bigcup_{i=1}^{n} \varphi(x_i)$ for every x' in $\Sigma(\varphi(x))$, where $\varphi(s_i)\varphi(x_i) \leq a$. By using the above s^* , we obtain $\varphi(s^*)x' \leq \varphi(s^*)\varphi(x) \leq \bigcup_{i=1}^n \varphi(s^*)\varphi(x_i)$ $\leq \bigcup_{i=1}^{n} \varphi(s_i) \varphi(x_i) \leq a$. If s is in $\Sigma'(p)$, we can show that $\varphi(s)$ is not less than a (by (2.5) in [2]). In particular, so is $\varphi(s^*)$. This means that x is φ -related to a. a(p) is therefore φ -related to a.

By virture of the above proof we obtain the following:

(3.3) Corollary. $a(p) = \sup_{s^* \in M^*} \{a : s^*\}$ for any kernel M^* of $\Sigma'(p)$.

(3.4) Proposition. Let p be any maximal φ -prime element belonging to an element a of L. Then a(p) is less than every element b such that $b \ge a$ and every element of $\Sigma'(p)$ is φ -unrelated to b.

Proof. Take an arbitrary element x of $\Sigma(a(p) \cup b)$. Then $x \leq x' \cup b$ for some x' of $\Sigma(a(p))$. Similar argument in the proof of (3.2) yields $x' \leq \bigcup_{i=1}^{n} \varphi(x_i) \cup b, \varphi(s^*)\varphi(x_i) \leq a \leq b$, where x_i and s^* are the same as in the proof of (3.2). Since s^* is φ -unrelated to b, there exists an element u of $\Sigma(\varphi(s^*))$ which satisfies that $uv \leq b$ implies $v \leq b$. Then we have $ux' \leq \bigcup_{i=1}^{n} \varphi(s^*)\varphi(x_i) \cup \varphi(s^*)b \leq b$. Hence $x' \leq b$, and hence $x \leq b$. Therefore we get $a(p) \cup b \leq b, a(p) \cup b = b$ and $a(p) \leq b$.

(3.5) Theorem. Every element a of L is decomposed into the meet of all its principal φ -components.

Proof. Let b be the element mentioned in (3.4). Let \mathfrak{P} be the set of all maximal φ -prime elements belonging to a. Then by (3.2) we get $a \leq \inf_{p \in \mathfrak{P}} a(p)$. Conversely, if we take an arbitrary element x of $\Sigma(\inf_{p \in \mathfrak{P}} a(p))$, then $x \leq \sup_{s \in \Sigma'(p)} \{a:s\}$ for every $p \in \mathfrak{P}$. By the compactness we can take a finite number of elements x_1, \dots, x_n such that $x \leq \bigcup_{i=1}^n x_i$ with $\varphi(s_i)\varphi(x_i) \leq a$ for suitable $b_i \in \Sigma'(p)$. Then by the similar argument in the proof of (3.2), we have $\varphi(s_p^*)\varphi(x_i) \leq a$ for some s_p^* in $\Sigma'(p)$. Now we consider the set M_p of the elements u of Σ such that $\varphi(u)\varphi(x_i) \leq a$ for $i=1, \dots, n$. (Existence of such an element u is easy to see.) Then M_p does not contained in $\Sigma(p)$ for each $p \in \mathfrak{P}$. By (2.6) in [2], u is φ -unrelated to a. Hence there exists an element u' of $\Sigma(\varphi(u))$ such that $u'v \leq a$ implies $v \leq a$. Then since $u'x'_i \leq \varphi(u)\varphi(x_i) \leq a$ for every x'_i in $\Sigma(\varphi(x_i))$, we have $x'_i \leq a, \varphi(x_i) \leq a$ for $i=1, \dots, n$. Thus we get $x \leq \bigcup_{i=1}^n x_i \leq \bigcup_{i=1}^n \varphi(x_i) \leq a$. Therefore we obtain $\inf_{p \in \mathfrak{P}} a(p) \leq a$, completing the proof.

4. φ -Primary Decomposition.

(4.1) Definition. An element q of L is (left) φ -primary, iff whenever $\varphi(x)\varphi(y) \leq q$ implies $x \leq r_{\varphi}(q)$ or $y \leq q$ for $x, y \in \Sigma$.

 φ -prime elements are evidently φ -primary elements.

Let M be a φ -system with kernel M^* . We suppose as in the case of [3] that M meets $\Sigma(a)$ if and only if M^* meets $\Sigma(a)$ for every a in L. (This condition holds for the trivial map $x \mapsto x, x \in \Sigma$.) Under the above condition we can prove that $r_{\varphi}(a \cap b) = r_{\varphi}(a) \cap r_{\varphi}(b)$ for any $a, b \in L$. The following properties are immediate by the definition of φ -radicals: 1) $a \leq b$ implies $r_{\varphi}(a) \leq r_{\varphi}(b)$ and 2) $r_{\varphi}(r_{\varphi}(a)) = r_{\varphi}(a)$.

(4.2) Proposition. If q_1, \dots, q_n is a finite number of φ -primary elements with the same φ -radicals, say $r_{\varphi}(q_i) = c$ for $i=1, \dots, n$, then $q = q_1 \cap \dots \cap q_n$ is φ -primary and has the same radical c.

The proof is the same as in [1].

(4.3) Proposition. An element q is φ -primary if and only if q: b = q for all elements b which are not less than $r_{\varphi}(q)$.

Proof. Suppose that q is φ -primary and b is not less than $r_{\varphi}(q)$. Let y_0 be an element of $\Sigma(b)$ which is not less than $r_{\varphi}(q)$. If x is in $\Sigma(q; b)$, then there is a finite number of elements x_1, \dots, x_n such that $x \leq \bigcup_{i=1}^n x_i$ and $\varphi(y)\varphi(x_i) \leq q$ for all y in $\Sigma(b)$, $i=1,\dots,n$. We have in particular $\varphi(y_0)\varphi(x_i) \leq q$. Hence we get $x_i \leq q$ for $i=1,\dots,n$ by the definition of φ -primarity. Therefore we have $x \leq q, q: b \leq q$ and q: b=q. Conversely, suppose that $\varphi(x)\varphi(y) \leq q$ and x is not less than $r_{\varphi}(q)$ for x, y in Σ . Then of course $\varphi(x)$ is not less than $\varphi(q)$. Hence we have $q:\varphi(x)=q$. Take an arbitrary element x' of $\Sigma(\varphi(x))$. Then we have $\varphi(x')\varphi(y) \leq q, y \leq q: x'$. Thus we get $y \leq \inf_{x' \in \Sigma(\varphi(x))} \{q: x'\} = q: \varphi(x) = q$. Therefore q is φ -primary.

A normal decomposition of elements with respect to φ -primary elements can be defined in the obvious way. If we suppose that q:q= e for every φ -primary element q [3], we obtain an analogue of the uniqueness theorem of Lasker-Noether in commutative rings.

(4.4) Theorem. Suppose that an element a has φ -primary decomposition. Then in any two normal decompositions of a, the number of φ -primary components as well as their φ -radicals are necessarily the same.

The proof of this theorem is essentially the same as in [1].

312

No. 5]

References

- [1] K. Murata: Primary decomposition of elements in compactly generated integral multiplicative lattices. Osaka J. Math., 7, 97-115 (1970). [2] K. Murata and Derbiau F. Hsu: Generalized prime elements in a compactly
- generated l-semigroup. I. Proc. Japan Acad., 49, 134-139 (1973).
- [3] K. Murata, Y. Kurata, and H. Marubayashi: A Generalization of prime ideals in rings. Osaka J. Math., 6, 291-301 (1969).