67. Generalized Prime Elements in a Compactly Generated l-Semigroup. II

By Kentaro Murata*) and Derbiau F. Hsu**)

(Comm. by Kenjiro Shoda, m. J. A., May 22, 1973)

Let L be a $c l$-semigroup with the conditions (1), (2), (3), (4) and (*) in [2]. Moreover we impose that the compact generator system Σ of L is closed under multiplication. The main purpose of this note is to define principal φ-components of elements in L by using φ-primes in [2], and to prove that every element of L is decomposed into their principal φ-components.
3. Principal φ-Components.

Let a be an element of L, and u an element of Σ. The (left) φ residual $a: u$ of a by u is defined to be the supremum of the set of all elements x with $\varphi(u) \varphi(x) \leq a, x \in \Sigma$. We suppose throughout this note that there is such elements x for any $a \in L$ and any $u \in \Sigma$. For a, b in L, the (left) φ-residual $a: b$ of a by b is defined as infimum of the $a: u$, where u runs over $\Sigma(b)$. Then we can prove the following properties: 1) $a \leq a^{\prime}$ implies $a: b \leq a^{\prime}: b, b: a \geq b: a^{\prime}$ and 2) ($\left.\bigcap_{i=1}^{n} a_{i}\right): b=\bigcap_{i=1}^{n}\left(a_{i}: b\right)$ for $a, a^{\prime}, a_{i}, b \in L$.

Now it is not so evident that $a: b \geq a$ for a, b in L. To prove this, it is sufficient to show that ($a: u) \cup a=a: u$ for $a \in L$ and $u \in \Sigma(b)$. Take an arbitrary element x of $\Sigma((a: u) \cup a)$. Then we can choose an element y of $\Sigma(a: u)$ with $x \leq y \cup a$. Since $y \leq \sup \left\{x^{\prime} \in \Sigma \mid \varphi(u) \varphi\left(x^{\prime}\right) \leq a\right\}$, we can find a finite number of compact elements x_{1}, \cdots, x_{n} such that $y \leq \bigcup_{i=1}^{n} x_{i}$ and $\varphi(u) \varphi\left(x_{i}\right) \leq a$. Then we have $x \leq \bigcup_{i=1}^{n} x_{i} \cup a \leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup a, \varphi(x) \leq$ $\bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup a$, and $\varphi(u) \varphi(x) \leq \bigcup_{i=1}^{n} \varphi(u) \varphi\left(x_{i}\right) \cup \varphi(u) a \leq a$. Therefore we obtain $(a: u) \cup a \leq a,(a: u) \cup a=a$.
(3.1) Definition. Let p be a maximal φ-prime element belonging to an element a of L. The principal φ-component of a by p, denoted by $a(p)$, is the supremum of all $a: s, s$ runs over $\Sigma^{\prime}(p)$, if $p \neq e$. If $p=e, a(p)$ is defined to be a.
(3.2) Lemma, $a \leq \alpha(p)$ and $a(p)$ is φ-related to a for any maximal φ-prime element p belonging to a.

Proof. If $p=e$, the assertion is trivial. So we suppose that $p \neq e$. We want to prove that $a(p) \cup a=\alpha(p)$. For the sake of this, take an arbitrary element x of $\Sigma(\alpha(p) \cup a)$. Then since there is an element y

[^0]of $\Sigma(a(p))$ with $x \leq y \cup a$, we have $y \leq \sup _{s \in \Sigma^{\prime}(p)}\{a: s\}=\sup _{s \in \Sigma^{\prime}(p)}\left\{\sup \left[N_{s}\right]\right\}$ $\leq \sup \left[\bigvee_{s \in \Sigma^{\prime}(p)} N_{s}\right]$, where N_{s} is the set of the compact elements u with $\varphi(s) \varphi(u) \leq a$, and V denotes the set-theoretical union. Then we can find a finite number of elements x_{i} of $\bigvee_{s \in \Sigma^{\prime}(p)} N_{s}$ such that $y \leq \bigcup_{i=1}^{n} x_{i}$. Suppose that $x_{i} \in N_{s_{i}}$. Then we have $\varphi\left(s_{i}\right) \varphi\left(x_{i}\right) \leq a, x \leq y \cup a \leq \bigcup_{i=1}^{n} x_{i} \cup a$ $\leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup a, \varphi(x) \leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup a$. Now let M^{*} be the kernel of $\Sigma^{\prime}(p)$. Then we can find s_{i}^{*} of M^{*} such that $s_{i}^{*} \leq \varphi\left(s_{i}\right)$ for $i=1,2, \cdots, n$. Take an element s^{*} of M^{*} such that $s^{*} \leq \prod_{i=1}^{n} s_{i}^{*}$. Then we have $\varphi\left(s^{*}\right) \leq \varphi\left(s_{i}\right)$, and $\varphi\left(s^{*}\right) \varphi(x) \leq \bigcup_{i=1}^{n} \varphi\left(s^{*}\right) \varphi\left(x_{i}\right) \cup a \leq \bigcup_{i=1}^{n} \varphi\left(s_{i}\right) \varphi\left(x_{i}\right) \cup a=a$. Hence $x \leq a: s^{*}, x \leq a(p)$. We get therefore $a(p) \cup a \leq a(p), a(p) \cup a=a(p)$. Next, take an arbitrary element x of $\Sigma(a(p))$. Then we can show as above that $x^{\prime} \leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right)$ for every x^{\prime} in $\Sigma(\varphi(x))$, where $\varphi\left(s_{i}\right) \varphi\left(x_{i}\right) \leq a$. By using the above s^{*}, we obtain $\varphi\left(s^{*}\right) x^{\prime} \leq \varphi\left(s^{*}\right) \varphi(x) \leq \bigcup_{i=1}^{n} \varphi\left(s^{*}\right) \varphi\left(x_{i}\right)$ $\leq \bigcup_{i=1}^{n} \varphi\left(s_{i}\right) \varphi\left(x_{i}\right) \leq a$. If s is in $\Sigma^{\prime}(p)$, we can show that $\varphi(s)$ is not less than a (by (2.5) in [2]). In particular, so is $\varphi\left(s^{*}\right)$. This means that x is φ-related to $a . \quad \alpha(p)$ is therefore φ-related to a.

By virture of the above proof we obtain the following:
(3.3) Corollary. $a(p)=\sup _{s^{*} \in M^{*}}\left\{a: s^{*}\right\}$ for any kernel M^{*} of $\Sigma^{\prime}(p)$.
(3.4) Proposition. Let p be any maximal φ-prime element belonging to an element a of L. Then $\alpha(p)$ is less than every element b such that $b \geq a$ and every element of $\Sigma^{\prime}(p)$ is φ-unrelated to b.

Proof. Take an arbitrary element x of $\Sigma(a(p) \cup b)$. Then $x \leq x^{\prime}$ Ub for some x^{\prime} of $\Sigma(a(p))$. Similar argument in the proof of (3.2) yields $x^{\prime} \leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup b, \varphi\left(s^{*}\right) \varphi\left(x_{i}\right) \leq a \leq b$, where x_{i} and s^{*} are the same as in the proof of (3.2). Since s^{*} is φ-unrelated to b, there exists an element u of $\Sigma\left(\varphi\left(s^{*}\right)\right)$ which satisfies that $u v \leq b$ implies $v \leq b$. Then we have $u x^{\prime} \leq \bigcup_{i=1}^{n} \varphi\left(s^{*}\right) \varphi\left(x_{i}\right) \cup \varphi\left(s^{*}\right) b \leq b$. Hence $x^{\prime} \leq b$, and hence $x \leq b$. Therefore we get $a(p) \cup b \leq b, a(p) \cup b=b$ and $a(p) \leq b$.
(3.5) Theorem. Every element a of L is decomposed into the meet of all its principal φ-components.

Proof. Let b be the element mentioned in (3.4). Let $\mathfrak{\beta}$ be the set of all maximal φ-prime elements belonging to a. Then by (3.2) we get $a \leq \inf _{p \in ß} a(p)$. Conversely, if we take an arbitrary element x of $\Sigma\left(\inf _{p \in \mathfrak{B}} \alpha(p)\right)$, then $x \leq \sup _{s \in \Sigma^{\prime}(p)}\{a: s\}$ for every $p \in \mathfrak{P}$. By the compactness we can take a finite number of elements x_{1}, \cdots, x_{n} such that $x \leq \bigcup_{i=1}^{n} x_{i}$ with $\varphi\left(s_{i}\right) \varphi\left(x_{i}\right) \leq a$ for suitable $b_{i} \in \Sigma^{\prime}(p)$. Then by the similar argument in the proof of (3.2), we have $\varphi\left(s_{p}^{*}\right) \varphi\left(x_{i}\right) \leq \alpha$ for some s_{p}^{*} in $\Sigma^{\prime}(p)$. Now we consider the set M_{p} of the elements u of Σ such that $\varphi(u) \varphi\left(x_{i}\right) \leq a$ for $i=1, \cdots, n$. (Existence of such an element u is easy to see.) Then M_{p} does not contained in $\Sigma(p)$ for each $p \in \mathfrak{B}$. By (2.6) in [2], u is φ-unrelated to a. Hence there exists an element u^{\prime} of $\Sigma(\varphi(u))$ such that $u^{\prime} v \leq a$ implies $v \leq a$. Then since $u^{\prime} x_{i}^{\prime} \leq \varphi(u) \varphi\left(x_{i}\right) \leq a$
for every x_{i}^{\prime} in $\Sigma\left(\varphi\left(x_{i}\right)\right)$, we have $x_{i}^{\prime} \leq a, \varphi\left(x_{i}\right) \leq a$ for $i=1, \cdots, n$. Thus we get $x \leq \bigcup_{i=1}^{n} x_{i} \leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \leq a$. Therefore we obtain $\inf _{p \in \mathfrak{\beta}} \alpha(p) \leq a$, completing the proof.
4. φ-Primary Decomposition.
(4.1) Definition. An element q of L is (left) φ-primary, iff whenever $\varphi(x) \varphi(y) \leq q$ implies $x \leq r_{\varphi}(q)$ or $y \leq q$ for $x, y \in \Sigma$.
φ-prime elements are evidently φ-primary elements.
Let M be a φ-system with kernel M^{*}. We suppose as in the case of [3] that M meets $\Sigma(a)$ if and only if M^{*} meets $\Sigma(a)$ for every a in L. (This condition holds for the trivial map $x \mapsto x, x \in \Sigma$.) Under the above condition we can prove that $r_{\varphi}(a \cap b)=r_{\varphi}(a) \cap r_{\varphi}(b)$ for any $a, b \in L$. The following properties are immediate by the definition of φ-radicals: 1) $a \leq b$ implies $r_{\varphi}(a) \leq r_{\varphi}(b)$ and 2) $r_{\varphi}\left(r_{\varphi}(a)\right)=r_{\varphi}(a)$.
(4.2) Proposition. If q_{1}, \cdots, q_{n} is a finite number of φ-primary elements with the same φ-radicals, say $r_{\varphi}\left(q_{i}\right)=c$ for $i=1, \cdots, n$, then $q=q_{1} \cap \cdots \cap q_{n}$ is φ-primary and has the same radical c.

The proof is the same as in [1].
(4.3) Proposition. An element q is φ-primary if and only if $q: b$ $=q$ for all elements b which are not less than $r_{\varphi}(q)$.

Proof. Suppose that q is φ-primary and b is not less than $r_{\varphi}(q)$. Let y_{0} be an element of $\Sigma(b)$ which is not less than $r_{\varphi}(q)$. If x is in $\Sigma(q: b)$, then there is a finite number of elements x_{1}, \cdots, x_{n} such that $x \leq \bigcup_{i=1}^{n} x_{i}$ and $\varphi(y) \varphi\left(x_{i}\right) \leq q$ for all y in $\Sigma(b), i=1, \cdots, n$. We have in particular $\varphi\left(y_{0}\right) \varphi\left(x_{i}\right) \leq q$. Hence we get $x_{i} \leq q$ for $i=1, \cdots, n$ by the definition of φ-primarity. Therefore we have $x \leq q, q: b \leq q$ and $q: b=q$. Conversely, suppose that $\varphi(x) \varphi(y) \leq q$ and x is not less than $r_{\varphi}(q)$ for x, y in Σ. Then of course $\varphi(x)$ is not less than $\varphi(q)$. Hence we have $q: \varphi(x)=q$. Take an arbitrary element x^{\prime} of $\Sigma(\varphi(x))$. Then we have $\varphi\left(x^{\prime}\right) \varphi(y) \leq q, y \leq q: x^{\prime} . \quad$ Thus we get $y \leq \inf _{x^{\prime} \in \Sigma(\varphi(x))}\left\{q: x^{\prime}\right\}=q: \varphi(x)=q$. Therefore q is φ-primary. q.e.d.

A normal decomposition of elements with respect to φ-primary elements can be defined in the obvious way. If we suppose that $q: q$ $=e$ for every φ-primary element q [3], we obtain an analogue of the uniqueness theorem of Lasker-Noether in commutative rings.
(4.4) Theorem. Suppose that an element a has φ-primary decomposition. Then in any two normal decompositions of a, the number of φ-primary components as well as their φ-radicals are necessarily the same.

The proof of this theorem is essentially the same as in [1].

References

[1] K. Murata: Primary decomposition of elements in compactly generated integral multiplicative lattices. Osaka J. Math., 7, 97-115 (1970).
[2] K. Murata and Derbiau F. Hsu: Generalized prime elements in a compactly generated l-semigroup. I. Proc. Japan Acad., 49, 134-139 (1973).
[3] K. Murata, Y. Kurata, and H. Marubayashi: A Generalization of prime ideals in rings. Osaka J. Math., 6, 291-301 (1969).

[^0]: *) Department of Mathematics, Yamaguchi University.
 **) Department of Mathematics, National Central University, Taiwan.

