95. On Strongly Regular Rings

By Katsuo Chiba and Hisao Tominaga
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, M. J. A., June 12, 1973)

A ring R is called strongly regular if for every element $a \in R$ there exists an element $x \in R$ such that $a=a^{2} x$. As is well-known, R is strongly regular if and only if one of the following equivalent conditions is satisfied:
(A) For every element $a \in R$ there holds $a \in a R$ and there exists a central idempotent e such that $a R=e R$.
(B) R is a regular ring without nonzero nilpotent elements. Obviously, the notion "strongly regular" is right-left symmetric. Next, a ring R is called a right [left] duo ring if every right [left] ideal of R is an ideal. Finally, a ring R is called a right [left] V-ring if $R^{2}=R$ and every right [left] ideal of R is an intersection of maximal right [left] ideals of R.

It is the purpose of this note to prove the following that contains [2; Theorem 2], [5; Theorem] and [7; Theorem 3 and Corollary 1]:

Theorem. The following conditions are equivalent:
(1) R is strongly regular.
(2) R is a regular ring and is a subdirect sum of division rings.
(3) $\mathfrak{l} \cap \mathfrak{x}=\mathfrak{l x}$ for every left ideal \mathfrak{l} and every right ideal \mathfrak{x} of R.
(4) R contains no nonzero nilpotent elements and R / p is regular

(5) R is a regular, right duo ring.
(6) $\mathfrak{r} \cap \mathfrak{r}^{\prime}=\mathfrak{r x}^{\prime}$ for each right ideals $\mathfrak{r}, \mathfrak{r}^{\prime}$ of R.
(7) R is a right duo ring such that every ideal is idempotent.
(8) R is a right duo, right V-ring.
(9) R contains no nonzero nilpotent elements and every completely prime ideal $\sqsubseteq R$ is a maximal right ideal.
(5')-(9'). The left-right analogues of (5)-(9).
In the proof of our theorem, we shall use several familiar results, which are summarized in the next lemma.

Lemma. Let R be a ring without nonzero nilpotent elements, and let a, b be elements of R.
(a) If $a b=0$ then $b a=0$, and so the right annihilator $r(a)$ coincides with the left one $l(a)$.
(b) If a is nonzero then $R / r(a)$ contains no nonzero nilpotent elements and the residue class \bar{a} of $a \bmod r(a)$ is a non-zero-divisor.
(c) If R is a prime ring then R contains no nonzero zero-divisors.

Proof of Theorem. (2) $\Rightarrow(1) \Rightarrow(4),(1) \Rightarrow(5) \Rightarrow(6) \Rightarrow(7)$, (1) (and (6)) $\Rightarrow(3) \Rightarrow(6)$: These are easily seen.
$(7) \Rightarrow(1)$: Let a be an arbitrary element of R, and (a) the (right) ideal generated by a. Then, $(a)=(a)^{2}=(a) R(a)=a R(a)=\left(a^{2}\right)$, whence it follows that $a=a^{2} x$ with some x.
$(1) \Rightarrow(2)$: \quad Since a regular ring is semi-simple, it suffices to prove that a strongly regular prime ring R is a division ring. Given a nonzero $a \in R$, there exists a central idempotent e such that $a \in a R=e R$. Since $e(x-e x)=0$ for every $x \in R, R=e R=a R$ by Lemma (c). Hence, e is the identity of R and a is invertible.
$(1) \Rightarrow(8)$: It remains only to prove that an arbitrary ideal \mathfrak{a} of R is an intersection of maximal ideals. Let b be not in \mathfrak{a}, and e a central idempotent such that $b \in b R=e R$. There exists then an ideal $\mathfrak{m \supseteq a}$ which is maximal with respect to the exclusion of b. Since the set $\{e\}$ is multiplicatively closed and \mathfrak{m} is maximal with respect to the exclusion of $\{e\}, \mathfrak{m}$ is a prime ideal. As was shown in the proof of $(1) \Rightarrow(2), R / \mathfrak{m}$ is a division ring, nemely, \mathfrak{m} is maximal.
$(8) \Rightarrow(1): \quad$ Suppose that there exists an element a not contained in $a^{2} R$. We can find then a maximal (right) ideal \mathfrak{m} such that $a^{2} R \subseteq \mathfrak{m}$ and $a \notin \mathfrak{m}$. Since R / \mathfrak{m} is a division ring, we have $a^{3} \notin \mathfrak{m}$, which contradicts $a^{2} R \subseteq \mathfrak{m}$.
$(4) \Rightarrow(9)$: This is obvious by the proof of $(1) \Rightarrow(2)$.
$(9) \Rightarrow(1)$: Let a be a nonzero element of R. Then, by Lemma (b), $\bar{R}=R / r(a)$ contains no nonzero nilpotent elements, \bar{a} is a non-zerodivisor of \bar{R}, and every completely prime ideal $\subseteq \bar{R}$ is a maximal right ideal of \bar{R}. Now, let M be the multiplicative semigroup generated by all the elements $\bar{a}-\bar{a}^{2} \bar{x}(x \in R)$. Although the existence of the identity of \bar{R} is not assumed, we may write $\bar{a}-\bar{a}^{2} \bar{x}=\bar{a}(1-\bar{a} \bar{x})$. First, we claim that M contains 0 . In fact, if not, there exists a completely prime ideal \bar{p} excluding M (see [1]). However, the existence of the inverse of $\bar{x} \bmod \bar{p}$ yields a contradiction. Now, let $\bar{a}\left(1-\bar{a} \bar{x}_{1}\right) \cdots \bar{a}\left(1-\bar{a} \bar{x}_{n}\right)=0$, where n is chosen to be minimal. If $n>2$ then $\left(1-\bar{a} \bar{x}_{1}\right) \cdots \bar{a}\left(1-\bar{a} \bar{x}_{n}\right)=0$ yields a contradiction $\bar{a}\left\{\left(1-\bar{a} \bar{x}_{n}\right)\left(1-\bar{a} \bar{x}_{1}\right)\right\} \cdots \bar{a}\left(1-\bar{a} \bar{x}_{n-1}\right)=0($ Lemma (a)). Next, if $n=2$ then $\left(1-\bar{a} \bar{x}_{1}\right) \bar{a}\left(1-\bar{a} \bar{x}_{2}\right) \bar{a}^{2}=0$ yields $\left(1-\bar{a} \bar{x}_{2}\right) \bar{a} \bar{a}\left(1-\bar{a} \bar{x}_{1}\right)=0$, and hence $\bar{a}\left(1-\bar{a} \bar{x}_{1}\right)\left(1-\bar{a} \bar{x}_{2}\right)=0$ again by Lemma (a). We have seen therefore $a-a^{2} x_{1} \in r(a)=l(a)$, whence it follows $\left(a-a^{2} x_{1}\right)^{2}=0$, namely, $a=\alpha^{2} x_{1}$.

Remark. In [7; Theorem 3], E. T. Wong proves also that if R is a strongly regular ring with 1 then for each $a \in R$ there exists a unit u such that $a^{2} u=a$. But, G. Ehrlich [3; Theorem 3] has proved the same with an elementary proof. Next, as a corollary to our theorem,
we have the following theorem due to R. Hamsher: A commutative ring R is regular if and only if it has no nonzero nilpotent elements and every prime ideal $\subsetneq R$ is maximal. Combining this with a theorem of W. Krull [4; Satz 10], we obtain at once the result of H. Lal [6; Theorem]: A commutative ring R with 1 is regular if and only if every primary ideal $\sqsubseteq R$ is maximal.

References

[1] V. A. Andrunakivič and Ju. M. Rjabuhin: Rings without nilpotent elements and completely simple ideals. Dokl. Akad. Nauk SSSR, 180, 9-11 (1968) : Soviet Math. Dokl., 9, 565-567 (1968).
[2] A. G. Athanassiadia: A note on V-rings. Bull. Greek Math. Soc. (N. S.), 2, 91-95 (1971).
[3] G. Ehrlich: Unit-regular rings. Portugariae Mathematica, 27, 209-212 (1968).
[4] W. Krull: Ideal Theorie in Ringen ohne Endlichkeitsbedingung. Math. Ann., 101, 729-744 (1929).
[5] S. Lajos and F. Szász: Characterizations of strongly regular rings. Proc. Japan Acad., 46, 38-40 (1970).
[6] H. Lal: A remark on rings with primary ideals as maximal ideals. Math. Scand., 29, 72 (1971).
[7] E. T. Wong: Regular rings and integral extension of a regular ring. Proc. Amer. Math. Soc., 33, 313-315 (1972).

