95. On Strongly Regular Rings

By Katsuo CHIBA and Hisao TOMINAGA Department of Mathematics, Okayama University (Comm. by Kenjiro Shoda, M. J. A., June 12, 1973)

A ring R is called *strongly regular* if for every element $a \in R$ there exists an element $x \in R$ such that $a = a^2x$. As is well-known, R is strongly regular if and only if one of the following equivalent conditions is satisfied:

(A) For every element $a \in R$ there holds $a \in aR$ and there exists a central idempotent e such that aR = eR.

(B) R is a regular ring without nonzero nilpotent elements. Obviously, the notion "strongly regular" is right-left symmetric. Next, a ring R is called a *right* [*left*] *duo ring* if every right [*left*] ideal of Ris an ideal. Finally, a ring R is called a *right* [*left*] *V-ring* if $R^2 = R$ and every right [*left*] ideal of R is an intersection of maximal right [*left*] ideals of R.

It is the purpose of this note to prove the following that contains [2; Theorem 2], [5; Theorem] and [7; Theorem 3 and Corollary 1]:

Theorem. The following conditions are equivalent:

(1) R is strongly regular.

- (2) R is a regular ring and is a subdirect sum of division rings.
- (3) $l \cap x = lx$ for every left ideal l and every right ideal x of R.

(4) R contains no nonzero nilpotent elements and R/\mathfrak{p} is regular for every prime ideal $\mathfrak{p} \subseteq R$.

- (5) R is a regular, right duo ring.
- (6) $r \cap r' = rr'$ for each right ideals r, r' of R.

(7) R is a right duo ring such that every ideal is idempotent.

(8) R is a right duo, right V-ring.

(9) R contains no nonzero nilpotent elements and every completely prime ideal $\subseteq R$ is a maximal right ideal.

(5')-(9'). The left-right analogues of (5)-(9).

In the proof of our theorem, we shall use several familiar results, which are summarized in the next lemma.

Lemma. Let R be a ring without nonzero nilpotent elements, and let a, b be elements of R.

(a) If ab=0 then ba=0, and so the right annihilator r(a) coincides with the left one l(a).

(b) If a is nonzero then R/r(a) contains no nonzero nilpotent elements and the residue class \bar{a} of a mod r(a) is a non-zero-divisor.

(c) If R is a prime ring then R contains no nonzero zero-divisors. Proof of Theorem. (2) \Rightarrow (1) \Rightarrow (4), (1) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7), (1) (and (6)) \Rightarrow (3) \Rightarrow (6): These are easily seen.

 $(7) \Rightarrow (1)$: Let *a* be an arbitrary element of *R*, and (*a*) the (right) ideal generated by *a*. Then, $(a) = (a)^2 = (a)R(a) = aR(a) = (a^2)$, whence it follows that $a = a^2x$ with some *x*.

 $(1) \Rightarrow (2)$: Since a regular ring is semi-simple, it suffices to prove that a strongly regular prime ring R is a division ring. Given a nonzero $a \in R$, there exists a central idempotent e such that $a \in aR = eR$. Since e(x-ex)=0 for every $x \in R$, R = eR = aR by Lemma (c). Hence, e is the identity of R and a is invertible.

 $(1)\Rightarrow(8)$: It remains only to prove that an arbitrary ideal a of R is an intersection of maximal ideals. Let b be not in a, and e a central idempotent such that $b \in bR = eR$. There exists then an ideal $m \supseteq a$ which is maximal with respect to the exclusion of b. Since the set $\{e\}$ is multiplicatively closed and m is maximal with respect to the exclusion of $\{e\}$, m is a prime ideal. As was shown in the proof of $(1)\Rightarrow(2), R/m$ is a division ring, nemely, m is maximal.

 $(8) \Rightarrow (1)$: Suppose that there exists an element *a* not contained in a^2R . We can find then a maximal (right) ideal m such that $a^2R \subseteq m$ and $a \notin m$. Since R/m is a division ring, we have $a^3 \notin m$, which contradicts $a^2R \subseteq m$.

(4) \Rightarrow (9): This is obvious by the proof of (1) \Rightarrow (2).

 $(9) \Rightarrow (1)$: Let *a* be a nonzero element of *R*. Then, by Lemma (b), $\overline{R} = R/r(a)$ contains no nonzero nilpotent elements, \overline{a} is a non-zerodivisor of \overline{R} , and every completely prime ideal $\subseteq \overline{R}$ is a maximal right ideal of \overline{R} . Now, let *M* be the multiplicative semigroup generated by all the elements $\overline{a} - \overline{a}^2 \overline{x}$ ($x \in R$). Although the existence of the identity of \overline{R} is not assumed, we may write $\overline{a} - \overline{a}^2 \overline{x} = \overline{a}(1 - \overline{a}\overline{x})$. First, we claim that *M* contains 0. In fact, if not, there exists a completely prime ideal \overline{p} excluding *M* (see [1]). However, the existence of the inverse of $\overline{x} \mod \overline{p}$ yields a contradiction. Now, let $\overline{a}(1 - \overline{a}\overline{x}_1) \cdots \overline{a}(1 - \overline{a}\overline{x}_n) = 0$, where *n* is chosen to be minimal. If n > 2 then $(1 - \overline{a}\overline{x}_1) \cdots \overline{a}(1 - \overline{a}\overline{x}_n) = 0$ yields a contradiction $\overline{a}\{(1 - \overline{a}\overline{x}_n)(1 - \overline{a}\overline{x}_1)\} \cdots \overline{a}(1 - \overline{a}\overline{x}_n) = 0$ (Lemma (a)). Next, if n=2 then $(1 - \overline{a}\overline{x}_1)\overline{a}(1 - \overline{a}\overline{x}_2)\overline{a}^2 = 0$ yields $(1 - \overline{a}\overline{x}_2)\overline{a}\overline{a}(1 - \overline{a}\overline{x}_1) = 0$, and hence $\overline{a}(1 - \overline{a}\overline{x}_1)(1 - \overline{a}\overline{x}_2) = 0$ again by Lemma (a). We have seen therefore $a - a^2x_1 \in r(a) = l(a)$, whence it follows $(a - a^2x_1)^2 = 0$, namely, $a = a^2x_1$.

Remark. In [7; Theorem 3], E. T. Wong proves also that if R is a strongly regular ring with 1 then for each $a \in R$ there exists a unit u such that $a^2u=a$. But, G. Ehrlich [3; Theorem 3] has proved the same with an elementary proof. Next, as a corollary to our theorem,

we have the following theorem due to R. Hamsher: A commutative ring R is regular if and only if it has no nonzero nilpotent elements and every prime ideal $\subseteq R$ is maximal. Combining this with a theorem of W. Krull [4; Satz 10], we obtain at once the result of H. Lal [6; Theorem]: A commutative ring R with 1 is regular if and only if every primary ideal $\subseteq R$ is maximal.

References

- V. A. Andrunakivič and Ju. M. Rjabuhin: Rings without nilpotent elements and completely simple ideals. Dokl. Akad. Nauk SSSR, 180, 9-11 (1968): Soviet Math. Dokl., 9, 565-567 (1968).
- [2] A. G. Athanassiadia: A note on V-rings. Bull. Greek Math. Soc. (N. S.), 2, 91-95 (1971).
- [3] G. Ehrlich: Unit-regular rings. Portugariae Mathematica, 27, 209–212 (1968).
- [4] W. Krull: Ideal Theorie in Ringen ohne Endlichkeitsbedingung. Math. Ann., 101, 729-744 (1929).
- [5] S. Lajos and F. Szász: Characterizations of strongly regular rings. Proc. Japan Acad., 46, 38-40 (1970).
- [6] H. Lal: A remark on rings with primary ideals as maximal ideals. Math. Scand., 29, 72 (1971).
- [7] E. T. Wong: Regular rings and integral extension of a regular ring. Proc. Amer. Math. Soc., 33, 313-315 (1972).

No. 6]