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87. Cotangential Decomposition of the Sheaf 9'/E

By Daisuke FUJIWARA and Koéichi UCHIYAMA
University of Tokyo

(Comm. by Kosaku Yo0SIDA, M. J. A., June 12, 1973)

The aim of this note is to construct a sheaf in the distribution
theory which has analogous properties to those of the sheaf C import-
ant in the hyperfunction theory.

Let 2 be a domain in R” and let 9, £, B and 1 denote the sheaves
of the germs of distributions, infinitely differentiable functions, hyper-
functions and real analytic functions in @ respectively. The quotient
sheaves 9’ /&, B/ A and 9’/ A should be called the sheaves of singu-
larities over 2. In 1969 M. Sato decomposed the sheaf $/ ] into the
cotangential directions. That is, he constructed a sheaf C over the
cosphere bundle S*2 whose direct image =,C along the projection =
onto the base space 2 is isomorphic to the sheaf B/ 4. Actually this
induces an isomorphism of global sections:

PO A=, Q) =C(S*2).
The sheaf C is flabby as well as the sheaf B. (See Sato-Kashiwara
[3], Sato-Kawai-Kashiwara [4].)

Let 9, be the sheaf of distributions in the local Sobolev space
H; . (2). In this note we decompose the sheaf 4(¢./& to obtain a sheaf
M over the cosphere bundle S*2 such that the following isomorphisms

H: ()] ED) Zry M) = M (S*Q)
hold. This sheaf 9* is soft.

The supports of sections of . are closed subsets of the cosphere
bundle S*2. These correspond to what is called ‘“singular supports
S—S” in the theory of the sheaf C. Their projections to the base
space 2 coincide with the classical singular supports of distributions.
Our definition of the sheaf .9 is essentially the same as announced in
Hoérmander’s paper [1]. And the wave front sets introduced by him
in the case of 9’/& are nothing but the supports of the sections of our
sheaf H~~.

Let w be an open set in 2 and ¢ be an open set in the unit sphere
S?-1in R".

We shall introduce linear spaces as the following.

H2(wxo)={u e Hi(0); for any compact sets KCowCQ2 and «Co
8™, there exists a function ¢x € Cr(w) such that (i) =0 and ¢r=1

near K and (ii) for any positive integer N, I@(S)IgC /(A +|EDY so long
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as the direction of ¢ lies in «.}

Here ¢ stands for the Fourier transform of v.

Lemma 1. Let o,,CS™! be a neighborhood of the direction of &,.
Assume that the rapidly decreasing estimate for u ¢ &' (w)

(%) [E|ZCx/A+|ENY for any positive integer N

holds so long as the direction of & lies in o.,. Then for any ¢ € Cy(w)
the estimate (x) of ggz\c holds so long as the direction of & lies in a smaller
neighborhood thereof.

The conditions in the above definition can be localized.

Lemma 2. Hjf(wXo)={ue H}(w); for any (x,&)cwXo there
exist a function ¢e Cy(w) such that (1) ¢(x)+0 and (ii) |@(é)|
ZCy/QA+|EDY for any integer N=0 so long as the direction of & lies in
Ty

When s=-—oo, Hyr(wxoe) is equal to the space Dig,i(w) of
Hoérmander where [¢] is the open cone spanned by the origin and o.

We define M:(wXo) as the quotient space HS  (w)/Hi37(wXa). The
correspondence M*: w X o—>M*(w X o) defines a presheaf. The sheaf as-
sociated with M¢ is denoted by H°. Our results are following theo-
rems.

Theorem 1. The sheaves 9(},,/ € and x MN° are isomorphic. More-
over the global sections H:,(2)/E(2) and M(Q X S™ ') are isomorphic.

Theorem 2. The sheaf M° is soft.

QOutline of proofs. We need some notations. We denote a finite
covering of S*7' by S. We put Z(oXS; M)={(f)seg; Jo € M(wX0)
and f,=f,  on o X(e¢Na)}.

Lemma 3. Let w, o and o” be neighborhoods of x. Assume that
o and o are relatively compact in o and o’ respectively. Let S be a
finite refinement of the covering S. Then there exist mappings, shown
by broken arrows, which make the diagram commutative.

Z@X &M - Hiu(o)|E@)

@l ®X @i

2 XS, M*)--- Hi, (o) 8.

Here the mappings @, @ and @ are defined by restriction.
With this lemma we are able to go to
Proof of Theorem 1. The stalk of z, M at x (7, M),
=lim (7, M) w)=lim M (o X S* ) =lim Z(w X S; M*). Lemma 3 shows
prye PEYS s

that the right hand side is isomorphic to lim H} (0)/E(@)=(He/E) -
—_

03T
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Hence 9(t,/E=nm, M. This gives an exact sequence:
0—>8-—>t51[1-§m—m*j]48—>0.
Since £ is a fine sheaf, this induces an exact sequence of global sec-
tions:
0—-E(Q)— H3 () — (7 M) (2)—O0.

Therefore H$,,(2)/E(Q) = M(2 xS ). Theorem 1 is thus proved.

Proof of Lemma 3. Let (f,),cs be an element in Z(w xS, M?).
Each f, belonging to M*(wX o) is represented by u,, € Hi (w). We de-
fine v, = ‘I[Z a(8)B,(&/ ]8[)@,(5)] . Here ' denotes the inverse

06,5
Fourier transformation. «(t) is such a C*-function as «(t)=0 near 0

and a(t)=1 outside [¢|<1. The collection {8,(§)},cs is a partition of
unity subordinate to the covering S of S”~!. And ¢, is the smooth
function stated in the definition of H{*(wXo¢). This mapping (u,,),
—v, is what we want. The ambiguity caused by selections of «, {8,}
and ¢, is absorbed in £(w). Commutativity is a consequence of follow-
ing ones.

Z(wXS, M )—H; (o) |E(), Z(0 XS, M*)—H},(o') ] € (o)

|/ |/

Z(a' XS, M?) ZwxS', M) .
Let (%,,),¢ g be an element in Z(w XS, M*). Let ¢ be any smooth func-
tion in Cg(w’). Then

8(F 3 .

. e T
:¢ (9"‘1 eZ‘:Sﬁt¢w'(uwt_unm)> mod- 8((0)’

and its Fourier transformation is rapidly decreasing so long as the
direction of £ lies in ¢ by Lemma 1. Therefore the first diagram is
commutative. We can verify similarly that the second diagram is
also commutative. Lemma 3 is thus proved.

Proof of Theorem 2. We can make use of the partition of unity
not only on the base space 2, but also on the fiber S*~* as we stated in
the proof of Lemma 3. This procedure is not difficult but the details
are omitted here.

Remark 1. Arguments as to the change of the variables (see
Hormander [2]) show that 2 X .S*~! should be regarded as the cosphere
bundle S*2.

Remark 2. It is not clear for us whether the sheaf 9’/_4 can be
decomposed by the method of Fourier transformation (cf. Hormander
2.
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