85. Classification of Homogeneous Siegel Domains of Type II of Dimensions 9 and 10 By Tadashi TSUJI Nagoya University (Comm. by Kunihiko Kodaira, M. J. A., June 12, 1973) - 1. In the recent paper [2], Kaneyuki and Tsuji classified all homogeneous Siegel domains of type I (resp. of type II) up to dimension 10 (resp. 8). The purpose of this note is to state the results of classification of homogeneous Siegel domains of type II of dimensions 9 and 10. The detailed results with their complete proofs will appear elsewhere. A homogeneous Siegel domain is said to be *irreducible* if it is irreducible in the sense of Kähler geometry. - 2. We will recall some of results about skeletons of type II in [2]. Put m+1 tiny circles \circ in R^2 such that they may form vertices of a regular m+1-polygon (by a 2-polygon we mean a line segment) and number these circles counterclockwise starting from the upper left corner and color the last m+1-th vertex \bullet in black (the i-th vertex is called simply i). Some of these vertices may be joined by line segments. If i and j are joined (resp. not joined), we will write $i \sim j$ (resp. $i \not\sim j$). If $i \sim j(i < j)$, then a positive integer n_{ij} should be attached to the line segment ij. The figure $(\mathfrak{S}, (n_{ij}))$ thus obtained is called an m-skeleton of type II if the following conditions are satisfied: - (1) There exists at least one vertex $i(1 \le i \le m)$ such that $i \sim m+1$. In this case $n_{i,m+1}$ is always an even number. - (2) If i < j < k, $i \sim j$ and $j \sim k$, then $i \sim k$ and $\max(n_{ij}, n_{jk}) \le n_{ik}$. - (3) If i < j < k < l, $i \sim j$, $j \sim l$, $i \sim k$, $k \sim l$, $i \sim l$ and $j \not\sim k$, then max $\cdot (n_{ij} + n_{ik}, n_{ij} + n_{kl}, n_{jl} + n_{kk}, n_{jl} + n_{kl}) \le n_{il}$. An m-skeleton $(\mathfrak{S}, (n_{ij}))$ of type II is said to be connected if for any two vertices i and j $(i, j \neq m+1)$ there exists a series of vertices $i_0 = i$, $i_1, \dots, i_s = j$ such that $i_{k-1} \sim i_k$, $i_k \neq m+1 (1 \leq k \leq s)$. Let $(\mathfrak{S}, (n_{ij}))$ and $(\mathfrak{S}', (n'_{ij}))$ be two m-skeletons of type II. Then \mathfrak{S} is said to be isomorphic to \mathfrak{S}' if there exists a permutation σ of the set $\{1, \dots, m+1\}$ such that - (1) $\sigma(m+1) = m+1$, - (2) if i < j and $\sigma(i) > \sigma(j)$, then $i \not\sim j$ in \mathfrak{S} , - (3) $\sigma(i) \sim \sigma(j)$ in \mathfrak{S}' if and only if $i \sim j$ in \mathfrak{S} , - (4) $n'_{\sigma(i)\sigma(i)} = n_{ij} (1 \le i \le j \le m+1).$ It can be seen that the above isomorphism is an equivalence relation. It is known in [2] that to each holomorphic equivalence class of homo- geneous Siegel domains of type II there corresponds an isomorphism class of certain skeletons of type II and that a homogeneous Siegel domain of type II is irreducible if and only if the corresponding skeleton of type II is connected. ## 3. In this paragraph we state the results obtained. Lemma. Let $(\mathfrak{S}, (n_{ij}))$ be an m-skeleton of type II which corresponds to an irreducible homogeneous Siegel domain of type II of dimensions 9 or 10. Then $m \leq 5$ and $m + \sum_{1 \leq i < j \leq m} n_{ij} + \frac{1}{2} \sum_{1 \leq i \leq m} n_{i,m+1} = 9$ or 10. (*) In view of the above facts and the results in [1], the classification of homogeneous Siegel domains of type II of dimensions 9 and 10 is, roughly speaking, reduced to the classification of connected m-skeletons of type II which satisfy the condition (*). Let \mathfrak{S}_2 be one of the following 2-skeletons of type II. Let $\mathfrak{S}_3^k(1 \le k \le 3)$ be one of the following 3-skeletons of type II. Then by using the analogous methods as in [2], we get **Theorem.** (i) To each of the connected m-skeletons of type II satisfying (*) which is not isomorphic to \mathfrak{S}_2 or $\mathfrak{S}_3^k (1 \le k \le 3)$, there corresponds a unique irreducible homogeneous Siegel domain of type II; - (ii) to each of the skeletons \mathfrak{S}_2 with $(n_{12}, n_{23}, n_{13}) = (2, 6, 6)$ or \mathfrak{S}_3^1 with $(n_{12}, n_{24}, n_{14}, n_{13}) = (2, 4, 4, 1)$, there correspond two non-equivalent irreducible homogeneous Siegel domains of type II; - (iii) to each of the skeletons \mathfrak{S}_2 with $(n_{12}, n_{23}, n_{13}) = (2, 2, 8), (2, 2, 10), (3, 2, 6), (3, 2, 8), (4, 2, 6), (2, 4, 6)$ or \mathfrak{S}_3^1 with $(n_{12}, n_{24}, n_{14}, n_{13}) = (2, 2, 4, 1), (2, 2, 6, 1), (2, 2, 4, 2)$ or \mathfrak{S}_3^2 , there corresponds a one-parameter family of non-equivalent irreducible homogeneous Siegel domains of type II; - (iv) to the skeleton \mathfrak{S}_2 with $(n_{12}, n_{23}, n_{13}) = (2, 4, 8)$, there corresponds a two-parameter family of non-equivalent irreducible homogeneous Siegel domains of type II; - (v) to the skeleton \mathfrak{S}_3^3 , there corresponds no homogeneous Siegel domain of type II; the domains in (i)—(iv) exhaust all irreducible homogeneous Siegel domains of type II of dimensions 9 and 10. The author wishes to express his thanks to Prof. S. Kaneyuki for his helpful suggestions and encouragement. ## References - S. Kaneyuki: On the automorphism groups of homogeneous bounded domains. J. Fac. Sci. Univ. Tokyo, 14, 89-130 (1967). - [2] S. Kaneyuki and T. Tsuji: Classification of homogeneous bounded domains of lower dimension (to appear).