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116. Thin Sets in an Open Unit Disk

By Masayuki OSADA
Department of Mathematics, Hokkaido University

(Comm. by Kinjiré6 KuNuUGl, M. J. A., July 12, 1973)

1. Introduction. The purpose of this paper is to establish the
following theorem.

Theorem. Let F bea closed subset of an open unit disk U={z|<1}.
Suppose the circular projection T(F) of F contains some countable
unton {E,}z_, of closed intervals such that each E, (n=1,2,.-.) is a
closed interval la,,b,] with 0<a,<b,<a,,.,<1 and lima,=1. Set

n—r0

Z=inf sup G (k=1,2,---). IfHm- 1 3 2(b,—a)d—a.b,)

XE€ER z€F,|2z|=2 n—so0 ——(l,n k=n
>0, then F is not thin ot z=1.

Notation and terminology. Let C be a complex plane. For a
subset A of C, we denote by A the boundary of A in C.
Let U be an open unit disk {|z|<1} in C in this paper. Set T'(z)=|z|
(ze U). Then T is a continuous mapping of U into U. For a subset
A of U, we say that T(A) is the circular projection of A. Letaandb
two points of U. Then we define the hyperbolic distance (or length)

o(a, b) of a and b by d(a, b)=| f__bb l For a subset A of U, the hyper-

—a
bolic diameter 5(4) of A is defined by 6(4)=sup d(a, D).
a,bed

We shall use the same notations as in’[3], for instance, Cy(X),
H¢,HS, HS, of=w,=w0, sy, the Green capacity C, etc.

2. Green potentials on U. Let ¢ be a (positive Radon) measure
on U. Set L(f):jfo Tdp for each f of Cy(U). Then L is a positive
linear functional on Cy(U). By Riesz representation theorem, there
exists a (positive Radon) measure ¥ on U such that L(f ):j fau*.

The following properties are easy to see:

(i) J fde=J f(z)Ddu(z) for any non-negative Borel measurable
function f on U,

(i) [dp=[dpr,

(i) S@E"=T(S,), where S, is the support of p.

Let g(z, §)=log’ 1-2

z2—
at £ e U and p* be a Green potential associated with a (positive Radon)

denote the Green function on U with pole
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measure g on U. Since g(—|z2|,[{D=9(®, D =9(2,])), we have
Lemma 1. p*(—|z)=p*(®)<p*”(z) in U.
By an argument similar to the proof of Hilfssatz 19.1 in [3] and
elementary properties of capacity, we have
Lemma 2. Let F bea K, set in U. Then C(F)=C(T(F)).
Corollary. Let F be a K, set in U. If C(F)=0, then C(T(F))=0.
3. Proposition and lemma.
Proposition. Let F be a closed subset of U and s be a non-negative
superharmonic function in U. Set E=T(F). We define a function ¢
on d(R—FE) such that

sup s(?) ek,
H(Q) = {zeFs1zi=¢
0 Leal.

Then sp(x)=HY%(—|z|) in U—E.

Proof. First suppose F is an arbitrary compact subset of U.
Since sy is a Green potential, by Frostman’s theornm there exists a
measure y on F' such that s,=p*. Set w=p*". By Kellogg’s theorem
and the Corollary to Lemma 2, we see that w=¢ quasi everywhere” on
E. We define a function  on (U —FE) as follows v+=w on E and 0 on
oU. Then ¥ =¢ quasi everywhere on o(U—E). It follows that w=w,
=HY"2=HY-% in U—FE (cf. [4]). On the other hand, it follows from
Lemma 1 that sz(2) =p“(2) =p*(—|z)=w(—|2)) in U.

Secondly suppose F' is an arbitrary closed set in U. Set F,=F

n {]zlgl—l} and E,=T(F,) (n=1,2,....). We define two functions
n

¢, and y, as follows

¢ onk,
b= {0 on 3U
and
o= {¢ on E,
"0 on 3UU(EF—E,).

Then HY-#»>HY-* in U—F and v, increases to ¢ on 3(U—FE) as n—co.
On observing that s;(2) = s, (2) = HY Z(—|z)) 2 H} *(—|z|) in U—E and
that HY-* converges to HY % as n—oo (cf. [2], [4]), we have s(2)
=>HY-%(—|z) in U—E.

Corollary (A. Beurling [1].

1:(2) =07 T(T(F) in U—-T(F).

Lemma 3 (cf. [5]). Let G be an upper half disk {ze U; Im z>0}

and E be a Lebesque measurable set on the boundary diameter. If z

s a point of G, then cof(E)::l/— A—]2)A—£) dé, where z=x-+1y
nde |§—z[f|1—&2}

(x,y; real numbers).

1) See p. 30 in [3].
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Corollary. Let E and H be two intervals [a, fl and [a, 1) respec-

tively (l§a§a<,s< 1) Then oy-#(B) > E—01—ap)
2 512r(1—a)
Proof. Wemap U—H onto an upper half disk G={z ¢ U ; Imz>0}
by S(z)= J lz“;”z . Then S(0)=+vai. By Lemma 1, we have

af-rm =20 [0 _d-ad_8)

T Jsw (E+a)(148%a)
_2 a0 A=a)¢ PP 1 1—a( SB® = S@ \?
n[tan ¢‘o?(1+52)]s<a>>zn va (1—|—S(/3)2 1+S(ae)2)
1 1—a (1—a?? (a_ _
32 wa A—apd_pay P OU=P
o 1 (—ad-ap
5127 l1—a )
4. Proof of Theorem. Let kew(z)—ﬁ be the Martin

kernel on U with pole at e’ ¢ oU (cf. [8]). We say that a closed subset
F of U is thin at a point e ¢ U if (k.is)pxkeo. If F,CF and F, is
not thin at ¢, then F' is not thin at e%.

By a brief consideration, we have

Lemma 4. Let {K,};_, be a sequence of compact subsets of U with
m UKk_(é Set F,= UKk and F= UKk Then F is thin at e*

n=1lk=n

e oU, if and only if lim (kew)Fn(a) 0 fm" a point a of U.

n—0

Proof of Theorem. Let ¢ be a function on 6(U—E) such that
sup k(z) (CekE,

@)= {zeF,lzl=c
7 0 Ceal.

Then there exists a positive integer #n, such that ang% for n=n, Let

K,=FNTYE,), F,= U K, (k=1,2,...) and FO_U K,. By the
Proposition and the Corollary to Lemma 3, we have
()r, O ZHE5(0) (En=U) E)
——j OO Z T o ()
so that lim (kl)F"(0)>0. By Lemma 4, we observe that F, is not thin

n-—

at z=1 and F(DOF,) is not thin at z=1.

-1 14— 1 2y l —
2) If 0<y<x<1, then tan-lx—tan-!y=tan 1_I_m/>4(at: Y).
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Set
A6)={z e U;|arg (z—1)|<6,, |z —1|<cos 6} (0<00<%).

We say that such a domain is a Stolz domain whose vertex is at z=1.

If 2z belongs to 4@), then 1=#l<_ 2 414 hence ki(z)=L—I2L
1—|z2] ~ cosé, [1—z

Then we infer that

cos’d, 1
4 1—|z|
Corollary 1. Let F be a closed subset of a Stolz domain A4(6,)
whose vertex is at z=1. Suppose the circular projection T(F) of F
contains some countable union {E,};_, of closed intervals such that each

E, m=1,2,...) is a closed interval [a,,b,] with 0<a,<b,<a,,, <1
and lim a,=1. If

n-—>c0

v

1 e (by—ar)(A—aiby) 0
o 1—a, Z 1—a, -0
then F' is not thin at z=1.
Corollary 2. Let K, (n=1,2,--.) be a closed interval [a,,b,]

such that 0<0a,<0,<@,.,<1 and lima,=1. Set F:C)K,,. If
n=1

n—co

Tim 7 (Uien [0, Du]) >0%, then F is not thin at z=1. In particular, if
n—>oo m([a’n’ 1))

lim 6(K,) >0, then F is not thin at z=1.

n—o

Proof. Since

1 & (be—a)(1—a,dy)
l1—a, rc;» l—a

3 (be—a)

S
3
b
[
3

and

l—a/n k=n m([any 1))
we obtain Corollary 2.

’

Example. If we setan[l— 14,1 ](n=1,2,--~) and F
2n 2n-+1

=O K,, then F is not thin at z=1. Moreover the hyperbolic diameter
n=1
of K, decreases to zero.

Remark 1. We can see that the closed set F' in the above example
satisfies the hypothesis of the Theorem, but does not satisfy the hypo-

3) m is a one-dimensional Lebesgue measure.
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thesis of C. Constantinescu and A. Cornea (Hilfssatz 19.3 in [3]).

Remark 2. By Corollary 1, we see that a curve in a Stolz domain
4(6,) issuing from a point in U and terminating at z=1 is not thin at
z=1.
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