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By Toshiaki YONEYAMA
Osaka University

(Comm. by KSsaku YOSIDA, M. J. A., July 12, 1973)

1. Introduction. The purpose of this paper’is to construct limits
of the discrete series for the Lorentz group of n-th order and to show
that the limits are imbedded in the principal series.

Limits of the discrete series have been constructed by Bargmann
[1] for SL(2, R) and by Takahashi [5] for the De Sitter group. The
results in this paper is a generalization of them. Knapp and Okamoto
[3] have discussed the same problem for limits of the holomorphic dis-
crete series for a simple Lie group whose associated symmetric space
has an invariant complex structure.

The author wishes to thank Professors O. Takenouchi and K.
Kumahara for their helpful suggestions.

2. Preliminaries. We denote by Spin(n, 1) the universal cover-
ing group of the Lorentz group SOe(n, 1). Spin(n, 1) has been realized
as a group consisting of 2 2 matrices with coefficients in the Clifford
algebra by Takahashi [6] as follows" We use the same definitions and

notations as in [6]. Let G be the set of matrices -- b’ such that

(..1) , b T_, bg’ V_ and l--b--l.
hen G is a group, and if 2g G is isomorphic with Spi(, 1).
=2, G is isomorphic with SU(1, 1).

he subgrou K of G consisting of matrices with e T_ is

isomorphic with Si() and is a maximal compact subgroup of G.

We identify k e T_ with ( ,) e K in the sequel.

3. Principal series. Let G-KAN be the Iwasawa decomposition
of G, and M the centralizer of A in K. Then the subgroups A, N and
M consist of matrices of the form

sht/2 eht/ -- 1+and
m O) (m=m, e T0_),
0 m

respectively. M is isomorphic with Spin(n-1). Let U and X be the
spaces of x e V_ such that, Ixl=l and Ixll, respectively, then G acts
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on U and X to the left in the following way" for g-- b’ e G and

x e U(or X),
(3.1) g x- (ax + b)(b’x + a’)-.
Put (K/M)*=K/M--{kM; k+k’-O,k e K} and U*- U--{--1}, then the

map p" GU defined by b’ --(a+b)(b’+’)- gives an isomorphism

of (K/M)* onto U*. We define a map " U*K by

s(u)= ((l +u) /[ l +u] 0 )0 (l+fi)/ll/u]
then p(s(u))=u for all u e U* and every g e G, except for a set of lower
dimension, has a unique decomposition g-s(p(g))m(g)at()z, with re(g)
eM, at()eAandzeN. For all geG and ueU*, we have p(gs(u))
--g.u and
(3.2) gs(u) s(g. u)m(g, u)at(.)z,
with re(g, u) e M, at(,.) e A and z e N. Let dp(u) be the normalized K-
invariant measure on U. Then we have
(3.3) dlu(g.u)-e(-)t(.)d/(u), or g e G and u e U,
and et(g,u) and re(g, u) are multipliers.

Every irreducible unitary representation of M is parametrized
with a sequence 2=(2, ..., 2_) of integers or half-integers (half odd
integers) such that
2_..._>2_2_>[2_[ if n--2m+l,>_,.. 27_27t_10 if n--2m.
Let (a, V) be the irreducible unitary representation of M correspond-
ing to such a sequence -(, ...,_) as above and let ,((2) be the
Hilbert space of functions f" UV such that

(3.4)

where [I. denotes the norm in V. Defining for g e G an operator
U(2, ,) (, e C) on ((2) by
(3.5) U(,, ,)f(u)=e-(-,)a(m(g-, u))-f(g-l.u) (f e J((,)),
we obtain a strongly continuous representation of G. If _(,)
=(n-1)/2, U(2, ,) is unitary and belongs to the principal series for G.
It is known that U(, ,) is irreducible for any 2 and , if n=2m/ 1, and
that it is irreducible unless is a sequence of half-integers and qm(,)
=0 if n--2m.

4. Discrete series. G has the discrete series if and only if n-2m,
which we assume henceforth. We have seen in 2 that G acts on X

to the left by (.1). The map Pa" G--,X defined by b’ --.ha’- extends

to an isomorphism of G/K onto X, and the map e" X--,G/K defined by

( eht/. eht/)e(x) eh t/. eh t (th t/.=lxl, t>O) is a section of p, i.e.,
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p(s(x))--x for all x eX. Then every g e G has a unique decom-
position g--s(p(g))k(g) with k(g)eK. According to this decom-
position, we have
(4.1) gs(x)--s(g.x)k(g, x) with k(g, x) e K.
If we denote by d/(x) the Euclidean measure on X, then
is G-invariant.

Let (a, V) be the irreducible unitary representation of K corre-
sponding to a sequence -(, ..., ) of integers or half-integers such
that ...][, and let , be an integer or half-integerm. Let
H(, ,) be the Hilbert space of functions f" XV such that

(4.2) f =c f(x) (1-x)-dz(x)<
where c is a positive constant. Then H(2, ) is not 0. We define a
unitary representation gTq(2, ) of G on H(2, ) by
(4.3) Tq(2, )f(x)= e-t(g-, x)a(k(g-, x))-f(g- x) (f H(2, )),

where g--- (a :)b’ and et(,)=b’x+a’.
Let H0(2, ,)be the subspace of H(2, ,) of C-functions, and let

denote the Casimir operator of G. We can then consider the operator
Ta(,,) on H0(2,,). We may identify the Lie algebra of G with that
of SO(2m, 1). Using the notation in [5], we have for f e H0(2,

A+(m--,-- 1)D
4

(4.4) + xa(X)
9x +,,F’ xxa(X)a(X)

1)1 x m,| f,, a (X) +,(,+m

and X, 0,whereA=...3x[ +’"+ D=x +. +xx x x
X+X=0 (i]).

For defining T(, ,), we have followed [6].
To construct the discrete series for G in an analogous way to [5],

we have to investigate T,(2, ,) in more detail. Here we consider in a
particular case that the parameters 2, ..., 2 of a satisfy
(4.5) 1--2:" --m_l--m or 1-2 m-1-- --.
This is the case that the restriction of a to M is irreducible. For such
a as above, making use of the results of Gelfand and Cejtlin [2], we
have the following

Lemma 4.1. Let , be integers or half-integers such that m
and -- is integer, and let a+ (resp. a-) be the irreducible unitary
representation of K corresponding to 2+=(2, ...,,2) (resp. 2-
=(2,...,2,--2)). Then we have for f e Ho(2, ),
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(4.6)

respectively.
Theorem 4.2. Notations being as in Lemma 4.1, the subspaces

H(, ) of H0(2+/-, ,) consisting of f such that
(4.7) T(2, ,)f= --[(m--1)2(2+m--1)+,(--2m/l)]f
are non-trivial, closed and invariant for T(], ) (g e G), respectively.
The unitary representations of G given by restricting T(, ) to H(2+/-, )
are irreducible and belong to the discrete series for G, respectively.

Moreover, put c- (2,--2m+l)F(--,+2m--1)F(2+,) in(4.2), then for
F(mYF(2-- +m)F(+--m+ 1)

any v e V, the hypergeometric function f(x) =F(,--2--m+ 1, +
m ]x])v belongs to H(2,,) and ]]f]=]]v], respectively.

Remark. In case n=4, our construction gives all the discrete
series representations of the universM covering group of the De Sitter
group (cf. [5]).. Limits of the discrete series and imbedding in the principal
series. Let be a positive half-integer. We also denote by 2 the se-
quence (2,...,,2) and let (, V9 be the corresponding irreducible
unitary representation of K. The restriction of to M is irreducible.
For C-unction f" XV, we define T(2) (g e G) by
(5.1) T()f(x)-- e-(-)(-,)a(k(g-, x))-f(g- x).
As in the case of the dicrete series, we have

--T(2)f [(1-lxl) 1-1xl 1----D+ xa(X) a
4 2 , 3x

(1(1) _i(i+m_l))lxl+mi(i+m 1)(5.2) + m--

Let H(2) be the space of C-funetions f:XV such that

(g.4) f has a continuous extension to the boundary U, and

(5.5)

We define TE(1) (g e G) by
(5.6) T(1)f(x) e-(-)("-’,)a(M(g-, x))-f(g-. x),
where we denote by M(g, x) instead of (k(g, x))’. HE(J) is defined sim-
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ilarly to H:(). Then H() are stable under T(R) (g e G), respectively.
Let H+/-() be the completions of H(), respectively.

Lemma 5.1. f(x)=F(l/2--,+m--1/2;m;Ix]Ov (v VO is a
solution of (5.3) and Itfll=(F(m)F(+ l/2)/F(+m-1/2))llvll. Con-
sequently, H+/-() are not O.

Lemma 5.2. The maps I() of H(R) into (() (considering the
restriction of a to M) defined by
(5.7) I+-(])f(u)--f(u) (f e H()),
are linear isometries, and for all g G
(5.8) I()T()-Uq(, m-1/2)I(),
espectively.

Lemma 5.2 implies that T() (g e G) are extended to strongly con-
tinuous unitary representations of G on H+/-(), respectively and which
are unitarily equivalent with subrepresentations of U(], m-- 1/2).

Theorem 5.3. The representations T+/-() of G on H+/-(R) are ir-
reducible and mutually disjoint. Consequently, U(, m--1/2) of the
principal series for G is reducible.

Remark. For fe H(), we have

iif(u) ld/(u) F(m) lim e Ill(x)[[(1--1 x [)’-d/(x),
U 7 0 X

and hence taking account of the construction of the discrete series, we
see that the representations T() on H() are limits of the discrete
series.
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