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1. In this note we establish some results on classification of com-
pact complex prehomogeneous Kiahler manifolds. Details will appear
elsewhere. By a compact prehomogeneous manifold, we mean a com-
pact complex manifold whose automorphism group has an open orbit.
In [4], J. Potters classified prehomogeneous compact complex surfaces.
In what follows we shall state a couple of structure theorems on pre-
homogeneous compact Kihler manifolds and a classification of such
manifolds with coirregularity less than 3.

For convenience sake, we list here some notations and termi-
nologies used below. Let V be a compact complex manifold.

Aut°(V)=the connected biholomorphic automorphism group of V.

A(V)=the Albanese torus of V.

q(V)=dim H'(V, ©®) which is called the irregularity of V.

cq(V)=dim V —q(V) which is called the coirregularity of V.

By a regular manifold we mean a compact complex manifold whose
irregularity vanishes. For a complex analytic vector bundle E on V,
we denote by P(E) the projective bundle associated with E.

2. First we state certain general theorems on prehomogeneous
manifolds. The following Proposition 1 can be proved by using a
lemma due to R. Remmert and van de Ven (see, Potters [4]).

Proposition 1. A compact complex prehomogeneous manifold is
a locally trivial analytic fibre bundle over a compact complex solvman-
ifold whose fibre is prehomogeneous with trivial Albanese torus.

Corollary. A compact Kihler prehomogeneous manifold V is a
holomorphic fibre bundle over its Albanese torus A(V) with a regular
prehomogeneous fibre.

In fact every Kihler solvmanifold is isomorphic to a complex torus.

In what follows we always assume that V is Kéhler.

Proposition 2. If q(V)=0, then V is a unirational projective
variety.

Proof. For the projectivity of V, see Oeljekraus [3]. We prove
the unirationality. Since V is regular, V can be imbedded into a pro-
jective space P" such that this imbedding induces an inclusion of G
=Aut°(V) into PGL(n). This shows that G and its stabilizer subgroup
at every point of V are both linear algebraic groups. Since by as-
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sumption V is birationally equivalent to an algebraic quotient space of
G, V is unirational by a theorem of Chevalley.

Corollary. Furthermore if dim V<3, then V is rational.

In fact, since Aut°(V) contains a connected linear algebraic group
of positive dimension, V is ruled. Hence, by Proposition 2, V is
rational.

Theorem 1. Let V be a compact Kihler prehomogeneous manifold.
Then the Albanese fibration of V is locally flat.

Outline of the proof. We need the following lemma.

Lemma. Under the assumption of Theorem 1, V can be imbedded
into a bundle-homogeneous projective bundle W over A(V) such that
this imbedding induces an inclusion of Aut°(V) into Aut°(W).

From the above lemma we can derive that kernel B of the canonical
epimorphism from Aut°(V) onto Aut®°(A(V)) has only a finite number
of connected components. Then the radical R of the maximal compact
subgroup of Aut°(V) is mapped onto Aut°(A(V)). Hence we can re-
duce the structure group of the Albanese fibring to the complexification
of R, which is abelian. This proves Theorem 1 in view of Murakami’s
theorem [2]. q.e.d.

3. Now we shall give a classification of compact Kdhler pre-
homogeneous manifolds V with cq(V)<2.

Theorem 2. If cq(V)=0, then V is a complex torus.

This is an immediate consequence of the corollary to Proposition 1.

Now assume that cq(V)=1 or 2. Note that then, by Proposition 2
and the corollary to Proposition 1, the Albanese fibre is P' or a ration-
al surface. Moreover in the case where ¢q(V)=2, we can prove that,
by blowing down the exceptional submanifolds, the Albanese fibre can
be assumed to be relatively minimal.

Theorem 3. Let V be a compact Kihler prehomogeneous moni-
fold. Suppose that cq(V)=1 or 2. Moreover in the case where cq(V)
=2, we assume that the Albanese fibre is P*. Then there exists a flat
vector bundle E of rank 2 or 3 (according to the dimension of the
Albanese fibre) on A(V) such that V is isomorphic to P(E). Conversely
every projective bundle on a complex torus associated with a flat vector
bundle is prehomogeneous.

Outline of the proof. In either case, we can show that there
exists a complex torus T in V which is mapped onto A(V) by the
Albanese map « and is stable under G=Aut°(V). Suppose first that
a|p: T—>A(V) is an isomorphism. Then T is a G-stable cross-section
of the Albanese fibration. Hence there exist a vector bundle E of rank
2 or 3 on A(V) and an exact sequence of vector bundles

0—»1—E—F—0
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where “1” denotes the trivial sub-line bundle corresponding to 7 and
F is isomorphic to the normal bundle of T in V. Since T is G-stable,
F is homogeneous and hence is flat (Morimoto [1]). From this we can
derive that E is also flat by computing the above extension. Next
suppose that |, is not bijective. In this case we can derive a con-
tradiction by computing the dimension of Aut°(V) explicitly. Thus
Theorem 3 is proved.

Similarly we can determine compact prehomogeneous Kihler
manifolds whose Albanese fibres are Hirzebruch manifolds. The clas-
sification of such manifolds is given by writing out the representatives
of transition functions of fibre bundles explicitly. Furthermore, us-
ing the explicit forms, we can prove the following fact which is expect-
ed to be true in higher dimensional cases.

Theorem 4. Every compact Kihler prehomogeneous manifold V
with cq(V)=2 is obtained from a prehomogeneous P-bundle over A(V)
by a finite number of “equivariant” blowing-ups and blowing-downs
where by an “equivariant” blowing-up, we mean o blowing-up with a
non-singular centre in which the prehomogeneity is not violated.
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