158. A Note on Character Sums

By Akio FuJII
Mathematics Department, Columbia University, New York 10027
(Comm. by Kunihiko Kodaira, m. J. A., Nov. 12, 1973)

§1. Introduction.

This is a continuation of the previous work (cf. [2]). We are concerned with the estimate of $\sum_{n \leq x} \chi(n)$, where χ is a primitive character $\bmod q$. In [2] we showed

$$
\left|\sum_{n \leq X} \chi(n)\right|<_{q} \sqrt{X} q^{1 / 6},
$$

where $<_{q}$ depends on prime factors of q. Here we will improve the dependence of $<_{q}$ on the prime factors of q. Hereafter implicit constants in \ll are absolute. We will prove

Theorem. Let χ be a primitive character $\bmod q$. Then for $X \leq q^{2 / 3}$.

$$
\left|\sum_{n \leq X} \chi(n)\right|<\sqrt{\bar{X}} q^{1 / 6} B(q)
$$

with

$$
\begin{array}{r}
B(q)=\operatorname{Min}_{q=q_{1} q_{2}}\left\{q _ { 1 } ^ { 1 / 3 } (\operatorname { l o g } q _ { 1 }) ^ { \delta _ { 2 } } \left[\left(\frac{1}{3} \log \left(q_{2} q_{1}^{2}\right)\right)^{R_{2} / 2} A_{2}^{1 / 3} q_{1}^{1 / 3} /\left(\prod_{p_{i} q_{2}} \log p_{i}\right)\right.\right. \\
\left.\left.+\left(\log q_{2}\right)^{1 / 2} A_{2}^{1 / 6}\left(\prod_{p_{i}, q_{2}} p_{i} /\left(p_{i}-1\right)\right)^{1 / 2}\right]^{1-\delta_{2}}\right\}
\end{array}
$$

where

1) $\operatorname{Min}_{q=q_{1} q_{2}}$ is taken over all decomposition of q into $q_{1} q_{2}$ such that if $q_{2}=\prod_{i=1}^{R_{2}} p_{i}^{r_{i}}$, then $p_{i}^{r_{i}} \| q$ and $r_{i}>r_{0}$, where r_{0} is 32 , say.
2) $A_{2}=\prod_{p_{i} q_{2}} p_{i}^{k_{i}}$, where $K_{i}=0,2,1$ according as $r_{i} \equiv 0,1,2(\bmod 3)$ and $p_{i}^{r i} \| q_{2}$.
3) $\delta_{2}=\left\{\begin{array}{lll}1 & \text { if } & q_{2}=1 \\ 0 & \text { if } & q_{2} \neq 1 .\end{array}\right.$
§2. Proof of Theorem.
Let $q=q_{1} q_{2}$ and $q_{2}=\prod_{i=1}^{R_{2}} p_{i}^{r_{i}}$ with $p_{i}^{r_{i}} \| q$ and $r_{i}>r_{0}$. Let s_{i} be the least natural number larger than or equal to $r_{i} / 3$. Write $d=\prod_{i=1}^{R_{R}} p_{i}^{s_{i}}$ and $k_{i}=0,2,1$ according as $r_{i} \equiv 0,1,2(\bmod 3)$. We have by definition $r_{i}+k_{i}=3 s_{i}$. Let $A_{2}=\prod_{i=1}^{R_{2}} p_{i}^{k_{i}}$. If $X \leq d$, the theorem comes from a trivial estimate. (For $\left|\sum_{n \leq X} \chi(n)\right| \leq \sqrt{X}=\sqrt{X} \sqrt{X} \leq \sqrt{X} d^{1 / 2}=\sqrt{X} q_{2}^{1 / 6} A_{2}^{1 / 6}$.) Hence we assume $d \leq X \leq q^{2 / 3}$. We see that

$$
\left|\sum_{n \leq x} \chi(n)\right| \leq\left.\sum_{k=0}^{\mu_{0}}\right|_{N \leq n \leq N^{\prime}} \chi(n) \mid,
$$

where $N=2^{\mu} d, N^{\prime} \leq 2 N, \mu=0,1, \cdots, \mu_{0}$ and $2^{\mu^{\circ}} d \leq X \leq 2^{\mu_{0}+1} d$. Hence the problem is reduced to the estimate of the sums of the type $\sum_{N \leq n \leq N^{\prime}} \chi(n)$ under $d \leq N \leq q^{2 / 3}, N^{\prime} \leq 2 N$.

Now

$$
\begin{align*}
\left|\sum_{N \leq n \leq N^{\prime}} \chi(n)\right| & \leq \sum_{a=1}^{d}\left|\sum_{n=N_{1}}^{N_{2}} \chi(a+u d)\right| \leq d^{1 / 2}\left(\sum_{a=1}^{d}\left|\sum_{u=N_{1}}^{N_{2}} \chi(a+u d)\right|^{2}\right)^{1 / 2} \tag{1}\\
& \leq d^{1 / 2}\left(\sum_{a=1}^{d}\left|\sum_{n=N_{1}}^{N_{2}} \chi_{1}(a+u d) e\left(\alpha^{\prime} a^{* 2} u^{2}+\beta^{\prime} u a^{*}\right)\right|^{2}\right)^{1 / 2}
\end{align*}
$$

where the dash indicates that we sum only over a 's relatively prime to $d, N_{1}=d^{-1}(N-\alpha), N_{2}=d^{-1}\left(N^{\prime}-\alpha\right), \chi=\chi_{1} \chi_{2}$ with primitive characters $\chi_{i} \bmod q_{i}$ for $i=1$ and $2, a^{*}$ is determined by $a \alpha^{*} \equiv 1\left(\bmod q_{2}\right), \alpha^{\prime}=A_{2} \alpha^{\prime \prime} / d$ with $\left(\alpha^{\prime \prime}, d\right)=1$ and $e(Y)=\exp (2 \pi i Y)$. The last inequality comes from the following lemma. (For convenience we will add the proof which we can see in [2].)

Lemma. Let χ be a primitive character $\bmod q$. Let $q=\prod_{i=1}^{R} p_{i}^{r_{i}}$ and $d=\prod_{i=1}^{R} p_{i}^{s_{i}}$, where s_{i} is the least natural number larger than or equal to $r_{i} / 3$ and let $k_{i}=3 s_{i}-r_{i}$ for $i=1,2, \cdots, R$. Let $A=\prod_{i=1}^{R} p_{i}^{k_{i}}$.

Then for any u,

$$
\chi(1+u d)=e\left(\alpha^{\prime} u^{2}+\beta^{\prime} u\right),
$$

where $\alpha^{\prime}=A \alpha^{\prime \prime} / d$ with $\left(\alpha^{\prime \prime}, d\right)=1$.
Proof. Since χ is decomposed uniquely into primitive characters $\chi_{i} \bmod p_{i}^{r_{i}}$

$$
\begin{aligned}
\chi(1+u d) & =\prod_{i=1}^{R} \chi_{i}(1+u d)=\prod_{i=1}^{R} \chi_{i}\left(1+p_{i}^{s_{i}}\left(\prod_{j \neq i} p_{j}^{s_{j}} u\right)\right) \\
& =\prod_{i=1}^{R} e\left(\alpha_{i}\left(u \prod_{j \neq i} p_{j}^{s_{j}^{\prime}}\right)^{2}+\beta_{i}\left(u \prod_{j \neq i} p_{j}^{s_{j}}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{i}=\frac{a_{i}}{p_{i}^{r_{i}-2 s_{i}}}=\frac{a_{i}}{p_{i}^{s_{i}-k_{i}}} \\
& \beta_{i}=-\frac{2 a_{i}}{p_{i}^{r_{i}-s_{i}}} \quad \text { with } \quad a_{i}=a_{x_{i}} \neq 0\left(\bmod p_{i}^{r_{i}}\right)
\end{aligned}
$$

by Postnikov-Gallagher expression for prime power modulus case (cf. [2]). Hence

$$
\chi(1+u d)=e\left(\sum_{i=1}^{R} a_{i}\left(u \prod_{u \neq i} p_{j}^{s_{j}}\right)^{2}+\sum_{i=1}^{R} \beta_{i}\left(u \prod_{j \neq i} p_{j}^{s_{j}}\right)\right) .
$$

Take

$$
\begin{aligned}
\alpha^{\prime} & =\sum_{i=1}^{R} \alpha_{i}\left(\prod_{j \neq i} p_{j^{s j}}^{s_{j}}\right)^{2}=\sum_{i=1}^{R}-\frac{a_{i}}{p_{i}^{s_{i}-k_{i}}} \prod_{j \neq i} p_{j}^{2 s_{j}}=\sum_{i=1}^{R} \frac{a_{i}}{p_{i}^{3 s_{i}-k_{i}}}\left(\prod_{j=1}^{R} p_{j^{s j}}^{s_{j}}\right)^{2} \\
& =\frac{A}{d}\left(\sum_{i=1}^{R} a_{i} \prod_{j \neq i} p_{j}^{r_{j}}\right)=\frac{A}{d} \alpha^{\prime \prime} \quad \text { and } \quad\left(\alpha^{\prime \prime}, d\right)=1 . \\
\beta^{\prime} & =\sum_{i=1}^{R} \beta_{i} \prod_{j \neq i} p_{j}^{s_{j} .} .
\end{aligned}
$$

Q.E.D. of Lemma.

Since $\tau\left(\chi_{1}\right) \chi_{1}(a+u d)=\sum_{c=1}^{q_{1}} \overline{\chi_{1}(c)} e\left(c(a+u d) / q_{1}\right)$, where $\tau(\chi)$ is the Gaussian sum of χ_{1}, the last inequality (1) becomes

$$
\begin{align*}
& \leq d^{1 / 2}\left(\sum_{a=1}^{d}\left|\sum_{u=N_{1}}^{N_{2}} \sum_{c=1}^{q_{1}} \frac{\chi_{1}(c)}{\tau\left(\chi_{1}\right)} e\left(c(a+u d) / q_{1}\right) e\left(\alpha^{\prime} a^{* 2} u^{2}+\beta^{\prime} u a^{*}\right)\right|^{2}\right)^{1 / 2} \\
& \leq d^{1 / 2}\left(\sum_{a=1}^{d} \frac{q_{1}}{\left|\tau\left(\chi_{1}\right)\right|^{2}} \sum_{c=1}^{q_{1}} \left\lvert\, \sum_{u=N_{1}}^{N_{2}} e\left(\alpha^{\prime} a^{* 2} u^{2}+u\left(\beta^{\prime} a^{*}+\frac{c d}{q_{1}}\right)+\frac{c a}{q_{1}}\right)^{2}\right.\right)^{1 / 2} \tag{2}\\
& \leq d^{1 / 2}\left(\sum_{c=1}^{q_{1}} \sum_{a=1}^{d} \left\lvert\, \sum_{u=N_{1}}^{N_{2}} e\left(\alpha^{\prime} a^{* 2} u^{2}+u\left(\beta^{\prime} a^{*}+\frac{c d}{q_{1}}\right)+\frac{c a}{q_{1}}\right)^{2}\right.\right)^{1 / 2} .
\end{align*}
$$

So in the extremal case, i.e., if $q_{2}=1$, the conclusion comes from Weyl sum estimate as in the proof of Polya-Vinogradov's theorem. Hence hereafter we assume $q_{2} \neq 1$. By van der Copput's method (cf. [3]), (2) becomes
(3) $\leq d^{1 / 2} q_{1}^{1 / 2}\left(\log q_{1}\right)^{\delta_{2}} S^{1 / 2}$,
where $S=\sum_{a=1}^{d} \sum_{|u| \leq N_{2}-N_{1}} \operatorname{Min}\left(N_{2}-N_{1}, 1 /\left\|\alpha^{\prime} a^{* 2} u\right\|\right)$ and $\|\lambda\|=\operatorname{Min}(\lambda$ $-[\lambda], 1-\lambda+[\lambda]$). Now let us express u as $u=u^{\prime} \sum_{i=1}^{R_{2}} p_{i}^{\tau_{i}}$ with $\left(u^{\prime}, d\right)=1$ and

$$
\left|u^{\prime}\right| \leq N d^{-1} \prod_{i=1}^{R_{2}} p_{i}^{-\tau_{i}} .
$$

Then

$$
S \leq \sum_{i=1}^{R_{2}} \sum_{r_{i}=0}^{\bar{\tau}_{i}} \sum_{u^{\prime}}^{\prime \prime} \sum_{a=1}^{d} \operatorname{Min}\left(\mathrm{Nd}^{-1}, 1 / \eta\left(u^{\prime}\right)\right)
$$

where $\bar{\tau}_{i} \leq\left(\log \mathrm{Nd}^{-1}\right) / \log p_{i}$ for each $\mathrm{i}=1,2, \cdots, R_{2}, \eta\left(u^{\prime}\right)=\left\|\alpha^{\prime \prime} a^{* 2} u^{\prime} / D\right\|$ with $D=d A_{2}^{-1} \prod_{i=1}^{R_{2}} p_{i}^{-\tau_{i}}$ and the double dash indicates that we sum over all u^{\prime} satisfying $\left|u^{\prime}\right| \leq \mathrm{Nd}^{-1} \prod_{i=1}^{R_{2}} p_{i}^{-\tau t}$.

Now the variable a runs over all residue classes $\bmod D$ with the multiplicity $\prod_{i=1}^{R_{2}} p_{i}^{\tau_{i}} A_{2} . \quad a^{* 2}$ runs over all residue classes $\bmod D$ with the multiplicity less than $2 \sum_{i=1}^{R_{2}} p_{i}^{\tau_{i}} A_{2}$. And $\alpha^{\prime \prime} a^{* 2} u^{\prime}$ runs over all residue classes $\bmod D$ with the same multiplicity as $a^{* 2}$. Hence

$$
\begin{aligned}
S & \leq \sum_{i=1}^{R_{2}} \sum_{i_{i}=0}^{\bar{\tau}_{i}} \sum_{u^{\prime}}^{\prime \prime} 2 A_{2} \prod_{i=1}^{R_{2}} p_{i}^{\tau_{i}} \sum_{a=1}^{D} \operatorname{Min}\left(\mathrm{Nd}^{-1}, 1 /\|a / D\|\right) \\
& \leq \sum_{i=1}^{R_{2}} \sum_{i=0}^{\tau_{i}} \mathrm{Nd}^{-1} \prod_{i=1}^{R_{2}} p_{i}^{-\tau_{i}}\left(\mathrm{ND}^{-1}+d \log D\right) \\
& \leq N^{2} d^{-2} A_{2} \prod_{i=1}^{R_{2}} \bar{\tau}_{i}+\mathrm{Nd}^{-1} d \log q_{2} \cdot \sum_{i=1}^{R_{2}} \sum_{\tau_{i}=0}^{\bar{\tau}_{i}} \prod_{i=1}^{R_{2}} p_{i}^{-\tau_{i}}
\end{aligned}
$$

Since

$$
N \leq q^{2 / 3}, N^{2} d^{-2} \leq N \sum_{i=1}^{R_{2}} p_{i}^{-2 / 3 k t} q_{1}^{2 / 3}=N A_{2}^{-2 / 3} q_{1}^{2 / 3}
$$

Hence

$$
S \leq N A_{2}^{1 / 3} q_{1}^{2 / 3}\left(\frac{1}{3} \log \left(q_{2} q_{1}^{2}\right)\right)^{R_{2}} /\left(\prod_{p_{i} \mid q_{2}} \log p_{i}\right)+N \log q_{2} \cdot \prod_{p_{i} \mid q_{2}} p_{i} /\left(p_{i}-1\right)
$$

Hence (3) becomes

$$
\begin{aligned}
\leq N^{1 / 2} d^{1 / 2} q_{1}^{1 / 2}\left(\log q_{1}\right)^{\delta_{2}}\{ & A_{2}^{1 / 8} q_{1}^{1 / 3}\left(\frac{1}{3} \log \left(q_{2} q_{1}^{2}\right)\right)^{R_{2} / 2} /\left(\prod_{p_{i} \mid q_{2}} \log p_{i}\right)^{1 / 2} \\
& \left.+\left(\log q_{2}\right)^{1 / 2}\left(\prod_{p_{i} \mid q_{2}} p_{i} /\left(p_{i}-1\right)\right)^{1 / 2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\leq N^{1 / 2} q_{2}^{1 / 8} A_{2}^{1 / 8} q_{1}^{1 / 2}\left(\log q_{1}\right)^{\delta_{2}} & \left\{A_{2}^{1 / 8} q_{1}^{1 / 3}\left(\frac{1}{3} \log \left(q_{2} q_{1}^{2}\right)\right)^{R_{2} / 2} /\left(\prod_{p_{i} \mid q_{2}} \log p_{i}\right)^{1 / 2}\right. \\
& \left.\quad+\left(\log q_{2}\right)^{1 / 2}\left(\prod_{p_{i} \mid q_{2}} p_{i} /\left(p_{i}-1\right)\right)^{1 / 2}\right\} \\
\leq N^{1 / 2} q^{1 / 8} A_{2}^{1 / 6} q_{1}^{1 / 3}\left(\log q_{1}\right)^{\delta_{2}}\{ & A_{2}^{1 / 6} q_{1}^{1 / 3}\left(\frac{1}{3} \log \left(q_{2} q_{1}^{2}\right)\right)^{R_{2} / 2} /\left(\prod_{p_{i} \mid q_{2}} \log p_{i}\right)^{1 / 2} \\
& \left.+\left(\log q_{2}\right)^{1 / 2}\left(\prod_{p_{i} \mid q_{2}} p_{i} /\left(p_{i}-1\right)\right)^{1 / 2}\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\sum_{n \leq X} \chi(n)\right| \leq \sqrt{X} q^{1 / 6} q_{1}^{1 / 3}\left(\log q_{1}\right)^{\delta_{2}}\{ & A_{2}^{1 / 3} q_{1}^{1 / 3}\left(\frac{1}{3} \log \left(q_{2} q_{1}^{2}\right)\right)^{R_{2} / 2} /\left(\prod_{p_{i} \mid q_{2}} \log p_{i}\right)^{1 / 2} \\
& \left.+A_{2}^{1 / 6}\left(\log q_{2}\right)^{1 / 2}\left(\prod_{p_{i} \mid q_{2}} p_{i} /\left(p_{i}-1\right)\right)^{1 / 2}\right\} .
\end{aligned}
$$

Since this is true for any decomposition of q into $q=q_{1} q_{2}$, we get our conclusion.
Q.E.D.

References

[1] Barban, M. B., Linnik, Yu. V., and Tsudakof, N. G.: On prime numbers in arithmetic progression with a prime-power difference. Acta Arith., 9, 375390 (1964).
[2] Fujii, A., Gallagher, P. X., and Montgomery, H. L.: On character sums and Dirichlet L-series (to appear).
[3] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford, Clarendon Press (1951).

