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145. On the Singularity of the Spectral Measures
of a Semi.lnfinite Random System

By Yoshiake Y0SHIOKA

(Comm. by K.Ssaku Y0SlDA, M. ft. A., Nov. 12, 1973)

1. Introduction. H. Matsuda and K. Ishii [1] showed an expo-
nential growth character of polynomials related to a second order
difference operator with random coefficients by invoking a limit
theorem of H. Furstenberg [4]. A. Casher and J. L. Lebowitz [3] then
used this character to derive the singularity of the related spectral
measure. We refer the reader to K. Ishii [2] for an improvement of
the proof of [3] and for the related physical problems.

The purpose of this note is to simplify the proof of the Matsuda-
Ishii theorem and to give an extension of Ishii’s results. Let (/2, ,P)
be a probability space on which are defined independent real random
variables {()}=0 with common distribution . We consider the follow-
ing random system on the semi-infinite lattice Z+ ={0, 1, 2, 3,... }

(a) {i dub(t) =u_(t)--(2+v)u(t)+u+(t)
dt

u_x(t)=0, n e Z+, t e [0, ).
Putting u(t)--ye-*t, we are led to the following difference equation
(b) 2y=y_--(2+v)y+y+x, n e Z+, y_x-0.

Let {p()}=0 be the solution of (b) under the conditions y0 1 and
y_=0. Denote by Z0 the space of all functions on Z+ with finite sup-
ports. We introduce an infinite Jacobi matrix H*=(h,), i, e Z+, with
h,=l, ]i-j=l, h**=-(2+v,), ieZ+, and h,=0, ]i--jJ>l. {H*} are
regarded as linear operators with domain 0. Then H is an essentially
self-adjoint operator on Z(Z+) for each e 9 and we denote its smallest
closed extension by H again [5]. We further introduce the resolvent
G*(2)=(-H*)-. Then we have the following expression of G(2)
-(G(2)e, e) m e Z+ [6]

6() {p()} E 1 Im # O.

Now let E() be the resolution of the identity of H*. K. Ishii [2]
showed that, for almost every fixed e 9, p()=(E*()e, e), n e Z+,
are singular with respect to the Lebesgue measure d under the as-
sumption that the support of v is finite and is not a single point. We
will show that this is still true under the weaker assumptions that

[e]dv(c)< support v not a single pointand that the of is
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(Theorem 2).
The author wishes to express his hearty thanks to Professors

M. Fukushima, H. Hijikata and S. Watanabe or their helpful advices.
2. Furstenbert’s theorem and its applications to the random

system. Let / be a probability measure on unimodular matrices
SL(m, R) and G be the smallest closed subgroup of SL(m, R) contain-
ing the support o /. Let {X}_-0 be the G-valued independent
random variables with common distribution Z. For each
g e SL(m,R), IIIglll denotes supl=llgxll. G is called irreducible if
the subspace o R invariant under G is either R or {0}. Otherwise
it is called reducible.

Theorem (H. Furstenberg [4]). Le G be a non compac$ subgroup
of SL(m,R) such $ha$ no subgroup of finite index is reducible and

Then $here exists a positive constan such tha$C

P{; lim (n+l)- loglIX...Xoxll--}---1 for each x e
Now let {x}=o be independent real random variables with common

distribution . Set X_(- -1)-, then (X}=o are independent

SL(2, R)-valued random variables with common ,distribution induced
by . Applying Furstenberg’s theorem, we have the ollowing.

Lemma 1. Suppose ha [ c dq(c) < c ad he support of
j_

contains more than one point. Then there exists a positive constant

" such that P{w; lim. (n/l)- loglIX...Xoxll=}=l for each x e R
-{o).

Proof. Firstwenotethat|lllg]]]d(g)<=| (Ic]+l)d(c)<. Let
J J-

G be the smallest closed subgroup of SL(2, R) containing the support
of . Since G contains at least two matrices of the type-( -1),-
(’-1), e4=e’, we see that ( -1)-=(0_1 le) e G, (01- le)(_’ -1)

e, O1) e G and (e 1 10)--(n(e 1 Therefore G is non

compact. Note that (’ -1) (__0 le)=(01 e’--e) G Let G0 be1 1 e an

arbitrary subgroup of G of finite index. Then there exist positive

integers n,m, such that (e I
--e’ )--(n(e 1-e’) 10) eG’ ( e’

1 e/
(0 -1 e Go. Therefore, Go contains at least two distinct

matrices of the type (01 fl)’ (’ )’ ff’#O" Let A be a subspaee of R

such that G,A=A. Put R={g M(R) gA A}, M(R9 being the space
of all 2 2 real matrices. Let us show that R=M(R). Clearly R is
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an algebra containing Go. Since (01 fl)-( )-( f0) eR’
e R. Similarly (01 O0) eR. Hence (00 )(01 )-( )eR and

( 00)( )=( )eR. Therefore R=M(R), which in turn implies

that A is either R or {0}, proving the irreducibility of Go. Q.E.D.
Let us return to the random system described in 1. From the

definition of {P()}--0,

p() )= i
Hence we have the next theorem by Lemma 1.

Theorem 1. If f [el d(c)< oo and the support of is not a single

point, then there exists a positive constant (2) such that

P{w lim._.oo n- log {(p+(2))+ (p:(2))} 2fl(2)} I

for each e Ri.
Lemma 2. Under the assumptions of Theorem I,

B(w Im G(2-i0) 0} 1
for each e R and m e Z+.

rooL By the assumption, (,]}=0 are independent identically
distributed random wriables with finite expectation. We ut
-{; lim. n-’ Io {(+()) +(())}=2#()}, e R, nd
=O(n)}. Theorem I and the strong law of large numbers then imply
P(A() B)= I. Using now the expression (c) of G(), and noticing

=0 (n i)e-K and the identity
1 + 1 2+2+, Im

p_()p() p()p+() p_()+()
we can combine the method of [2] with the Lebesgue dominated con-
vergence theorem to obtain that Im G(2-iO)-O for everyeA(2) B.

Q.E.D.
Consider the product space (R 9, (R) , d2 dP), where (R,

(R), d2) is the real line with the Lebesgue, measure d2.
Lemma a. ((2, ) Im G(2-i0) 0} e (R)
Proof. Since the unction f(2,)=ImG(2-i(1/n)) is continu-

ous in 2 e R or each e 9, f(2, ) is (R) measurable and so is
Im G(2-i0). Q.E.D.

Fubini’s theorem together with Lemmas 2 and 3 implies the follow-
ing.

Lemma 4. Under the assumptions of Theorem 1, for almos$ every
fixed e 9, Im G(2-iO)=O a.e. 2 e R.

Theorem 2. Under the assumptions of Theorem 1, P(w; dp(2) is
singular wi$h respec$ o he Lebesgue measure for all m e
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Proof. We see that

Im G;(2)--
(2’--)+

When 2"0--, the left-hand side converges to Im G;(2’--iO) and the

Theorem 2 now ollows rom Lemma 4. Q.E.D
Finally we consider the solution {u(t)}=0 of the evolution equation

(a) under the initial condition u(0)=3, with N e Z+ being arbitrarily
fixed. We say that the weak absence of diffusion takes place if

]UN(t) dt diverges or almost all

Theorem 3. Under the assumptions of Theorem 1, the weak
absence of diffusion takes place.

This theorem was obtained by K. Ishii [2] when the support of
is finite and is not a single point. By Lemma 4 and the Stieltjes inver-
sion formula, almost every operator H" has the property (A) of [2]
even in the present case. By the standard argument involving the
uniform integrability, we can then prove Theorem 3.
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