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1. Recently, in [1], Borchers has characterized inner auto-
morphisms of von Neumann algebras. In the paper, he also investi-
gated and classified general automorphisms of von Neumann algebras.
As an interesting consequence of Theorem 3.8 and Theorem 4.1 in [1],
we have the following theorem (cf. Remark in below).

Theorem. Let be a yon Neumann algebra, the center of
an automorphism of and the fixed algebra of , that is,

.={A e;a(A)=A}. Then there exists a sequence of mutually
orthogonal projections (E n= O, 1, 2, } in f

_
which satisfies the

following conditions:

(1) ,=oEn=I,
(2) for each n=/=O, as is inner on E. for k--O (mod n),
(3) for each n=/=O, as is freely acting on for kO (mod n), and
(4) as is freely acting on o for k--l, 2,....
In this paper, we shall show, without applying Theorem 3.8 and

Theorem 4.1 in [1], the Theorem using the Kallman decomposition
theorem of automorphisms [4: Theorem 1.11].

2. Let be avon Neumann algebra and a an automorphism of
j/(by an automorphism of a von Neumann algebra we mean an auto-
morphism for the .-algebra structure), a is called freely acting on

AB--a(B)A or any B e
implies A--0 ([4]). If F is a projection in the center of fixed by
we can consider a an automorphism of the reduced von Neumann
algebra of by the equality

(AF)--(A)F for any A e .
By Kallman’s theorem, there exists a central projection F fixed

under a such that a is inner on and a is freely acting on
We shall call this projection F the central projection inducing the inner
part of

Remark. By Kallman’s theorem, we have that a is freely acting
on if and only if a is outer on ) for each central projection G
fixed under a. Hence, our Theorem is an immediate result of Theorem
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3.8 and Theorem 4.1 in [1].
In order to prove the Theorem by using the Kallman decomposi-

tion theorem we need the following Lemma, which is a variation of
Lemma 4 in [3] (or, cf. [2" Lemma 1]) and is proved with a minor
modification.

Lemma. Let be a yon Neumann algebra, G a group of auto-
morphisms of and an automorphism of such that

ag=ga
for every g e G. Then the central projection F inducing the inner
part of is fixed under every g e G, that is,

g(F)--F for every g e G.
3. Now, we shall prove the Theorem. Let E be the central pro-

jection inducing the inner part of a, then E e _. Consider a an
automorphism of /z_. Let E be the central projection inducing
the inner part of a in b-,, then E is a central projection of such
as E.<_I--E. Applying Lemma to a and G={a; n-0, 1, _+2,...},
we have E e .. Therefore, there exists a projection E. e 2; CI such
that a is freely acting on, a is inner on/ and a is freely acting
on (/_,)z_.=/__. Repeating this method inductively, for
every positive integer n, there exists a projection Ene which
satisfies the following three conditions"

E <=I--(E +... +E_),
is inner on, and
is freely acting on _(,+...+.

Put Eo=I--= E, then it is clear that E(n=0, 1,2, ...) are projec-
tions in 2; gl satisfying the conditions (1) and (2). For two positive
integers k and n, assume that k0(modn). So, k has a form
k=ln+m(l=O, 1,2, m=l, 2, ...,n--1). Thenoisinneron
and is freely acting on because EI--(E+E+... +E,), and
so a=a.a is freely acting on. Thus E (n=1,2, ...)satisfy
the condition (3). By the definition, ior every integer k, Eo<:I
--(E+... +E). It implies that a is freely acting on o, which is
the condition (4). Thus Theorem is proved.
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copy [1].
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