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1. Introduction. Very recently, Ifantis and Kouris [1] show, a
Hilbert space approach is powerful to give bounds of roots of algebraic
equations ; actually, they show that the operator bound of a perturba-
tion of the simple unilateral shift by a dyad gives certain bounds of
roots. Inthe presentnote, giving three norms on n-dimensional vector
space, we shall obtain certain bounds of roots estimating operator
norms of companion matrices.

For a given algebraic equation

(1) P(R)=2"+a,2" '+ - - +0,=0,
we associate the companion matrix

—Qp —Qpy =y e —Qy —O

1 0 0 e 0 0
(2) T=| 0 1 0 e 0 0 |

0 0 0 T | 0

cf. [2], esp. Chapter VII. It is well-known that the spectrum o(T) of
T coincides with the set of all roots of (1), i.e.

(3) o(T)={z; p(2)=0}.
From (3), we have
(4) zI=r(D =T,

for any root z of (1), where »(T) is the spectral radius of T: »(T)
=8UD;c,(r, |2| and ||T] is the operator norm of T': | T|=sup,;-. || TS|l
considering T as an operator on the n-dimensional Banach space H.
2. Carmichael-Mason’s theorem. Here we regard H as the n-
dimensional unitary space with orthonormal basis e, ---,¢,. For z,

y e H, we put (xQy)z=(z,y)x for ze H. Then we can express the com-
panion matrix T of (1) as

(5) T=V—e&u,
where
(6) u=ake,+---+afe,

and
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00 0 ... 00
100 ..« 00
(7) V=0 1 0 ... 0 0]
000 --.- 10
Theorem 1. If zis a root of (1), then
(8) 2|14+ - - +|an)

Proof. We have
ITI=1V—eQu| =] V—i};'l Oy i 168 |

SIHVI+2 G-l el el

<143 il
Hence we have (8) by (4).
Theorem 2 (Carmichael-Mason). If z is a root of (1), then
(9) [ZISA+|af+ - +]a, )V
Proof. Since V*e,=0, we have V*(e,Qu)=V*e,Qu=0. Hence we
have
ITIP=T*T||=](V—-eQ@uw*(V—e,Qu)|
=[|V*V +uQul|<|| V¥V + | u@u||
=1+[lulr
Since ||u|*=|a,*+ - - - +|a, [}, we have (9) by (4).
3. Montel’sand Enestrom-Kakeya’s Theorem. We shall replace
the norm of H by the sup-norm:
(10). [ flle=max {|fil, - -, | fal}
for f:(fl’ v ’fn) €H.
Theorem 3 (Montel). If z is a root of (1), then
an lz|<max {1, g+ - - +la,}.
Proof. For a matrix X=(x,;), we have

llelm=lsmig§ jle |24l

Therefore, we have (11) by (4).

Theorem 4 (Montel). If z is a root of (1), then
12) [ZIS|a |40 — a4+ - - +]@_— 0y | F]a, —1].

Proof. Put q(z)=(1—2)p(z). Apply Theorem 3 for q(z). Since
the right hand side of (12) is not less than 1, we have (12) by (11).

It is known that Theorem 4 implies the following well-known
theorem :

Theorem 5 (Enestrom-Kakeya). If z is a root of

bpz"+b2" ' 4. +b,=0,

where

v

byzbz---2b,20,
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then |z|<1.
4. Cauchy’s theorem. If we replace the norm of B by
3) =1 il - -+ Fals
for f=(f,, -+, f.), then we have another bound for roots of (1):
Theorem 6 (Cauchy) . If z is a root of (1), then
14 Iz|§1+max {la’ll’ ’lan|}
Proof. It is sufficient to show that || T||; is not greater than the
right hand side of (14). For any f e H, we have

n n-1
”Tf”1=;=:‘i Ia’n—i+1fil+§ | fil

= (1+max )1/l

5. Operator coefficients. In the preceding sections, we have
calculated bounds for roots of equations with numerical coefficients.
In this section, we shall give bounds for roots of equations with oper-
ator coefficients. Similar equations are considered, as a generalization
of the classical propervalue problem, by Atkinson, Sz.-Nagy, Miiller
and others, cf. [3].

Let us suppose that

V@R)=2"+2""V,+ - +2V,+V,

where V,, - .., V, are (bounded linear) operators on a Hilbert space K.
The (operator) companion matrix of V(z) is

—Vn _Vn-l _Vn—z o ""'Vz "—Vl

1 0 0 0 0

V=] 0 I 0 0 0
0 0 0 I 0

Let H be the direct sum of n copies of K. We shall congider V as a
linear operator on H. A complex number z is called a root of V(z) if
there is a non-zero x ¢ K such that
(15) V(z)x=0.
As in the case of numerical coefficients, we have

Lemma 7. The set of all roots of (15) is the point spectrum op(V)
of V.

Proof. If zeop(V), then Vx=zx for some non-zero x=(x,, -- -,
xz,) € H. Hence we have

- anl“ V’n—le— cer szn—l_ len=zx1

X, =2,

(16) x, =2,
b =2%,.

From (16), we have x,%#0 and V(2)x,=0, that is, z is a root of (15).
Conversely, if V(2)x,=0 for 2,0, then we have a non-zero vector
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z e K by (16) putting z,=x, and z=(z,, ---,x,). Clearly, x satisfies
Vae=zx, and z € ap(V).
By Lemma 7, corresponding to (4), we have
4) lz|=r(WM =V,
for any root z of (15). Hence, we can give a bound for roots of (15)
estimating || V.
For example, if we give a norm of H by
am [ flle=max {|fill, - -, [ f=l} for [f=/f @D @S
then we have following theorem corresponding to Montel’s theorem:
Theorem 8. If z is a root of (15), then
(18) |2l<max (L, | V]| + - -+ Val)-
Proof. For any e H such that ||2]..<1, we have

n
|Val.gmax {3 1Vacal-lzd el -zl

<max (L[| Vil +- - - +1 V.l
Hence, by (4’), we have (18).
Corresponding to Theorem 4, we have
Theorem 9. If z is a root of (15), then
19 IS VAl HI V= Vol 4+ - H Vo = Vol +HI V=1l
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