9. On the Completions of Maps

By Tadashi ISHII Shizuoka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

In this paper all spaces are assumed to be completely regular T_2 . Let f be a continuous map from a space X into a space Y. As is well known, there exists its extension $\beta(f): \beta(X) \rightarrow \beta(Y)$, where $\beta(S)$ denotes the Stone-Čech compactification of a space S. Furthermore, it is known that $\beta(f)$ carries $\mu(X)$ into $\mu(Y)$ and $\nu(X)$ into $\nu(Y)$ ([14], [3]), where $\mu(X)$ is the topological completion of X (that is, the completion of X with respect to its finest uniformity μ) and $\nu(X)$ is the realcompactification of X. We denote the restriction maps $\beta(f)|\mu(X)$ and $\beta(f)|\nu(X)$ by $\mu(f)$ and $\nu(f)$ respectively.

The purpose of this paper is to study the relations between f and $\mu(f)$ (or v(f)).

We note first that $\mu(f): \mu(X) \to \mu(Y)$ and $\nu(f): \nu(X) \to \nu(Y)$ are not necessarily perfect even if $f: X \to Y$ is perfect. A continuous map ffrom a space X onto a space Y is called a quasi-perfect (perfect) map if f is a closed map such that $f^{-1}(y)$ is countably compact (resp. compact) for each $y \in Y$.

Example. Let Y be a pseudo-compact space such that the preimage X of Y under a perfect map f is not pseudo-compact ([4, Example 4.2]). Then both $\mu(f): \mu(X) \rightarrow \mu(Y)$ and $v(f): v(X) \rightarrow v(Y)$ are not perfect, since $\mu(X)$ and v(X) are not compact, while $\mu(Y)$ and v(Y) are compact (cf. [14], [3]).

In view of these results, it is significant to study under what conditions $\mu(f)$ (or $\nu(f)$) is perfect.

Theorem 1. If $f: X \to Y$ is an open quasi-perfect map, then $\mu(f): \mu(X) \to \mu(Y)$ and $\nu(f): \nu(X) \to \nu(Y)$ are open perfect.

To prove this theorem, we use the following lemmas.

Lemma 2 (Zenor [17]). Let C(X) be the space of all the non-empty compact sets in a space X with the finite topology. If X is topologically complete, so is C(X).

The finite topology of C(X) is defined as follows: For any finite number of open sets $\{U_1, \dots, U_n\}$ of X, we set $[U_1, \dots, U_n] = \{K \in C(X) | K \subset \bigcup_{i=1}^n U_i, K \cap U_i \neq \emptyset \text{ for } i=1, \dots, n\}$. As an open base of C(X) we take all such sets. It is well known that if X is completely regular then so is C(X) (Michael [12]).

T. Ishii

Lemma 3. If $f: X \to Y$ is an open quasi-perfect map, then $\varphi: Y \to C(\mu(X))$ and $\varphi^*: Y \to C(\nu(X))$ are continuous, where $\varphi(y) = \operatorname{cl}_{\mu(X)} f^{-1}(y)$ and $\varphi^*(y) = \operatorname{cl}_{\nu(X)} f^{-1}(y)$ for each $y \in Y$.

Hoshina [5] proved the continuity of $\varphi: Y \rightarrow C(\mu(X))$, and the continuity of $\varphi^*: Y \rightarrow C(\nu(X))$ is similarly proved.

Proof of Theorem 1. We note first that a surjective map $g: X \to Y$ is perfect if and only if any filter base $\{F_a\}$ in X such that $\{g(F_a)\}$ has a cluster point in Y has a cluster point in X. Now we prove the theorem for the case of $\mu(f)$, since the case of $\nu(f)$ is similarly proved. Let $\mathfrak{F} = \{F_a\}$ be a filter base in $\mu(X)$ such that $\{\mu(f)(F_a)\}$ has a cluster point v in $\mu(Y)$. Let us put

$${}^{\mathfrak{G}} = \{G_r | v \in G_r, G_r: \text{ open in } \mu(Y)\}, \\ {}^{\mathfrak{G}}_Y = \{H_r | H_r = G_r \cap Y, G_r \in \mathfrak{G}\}.$$

Then \mathfrak{G}_Y is a Cauchy filter base in Y with respect to μ , and it converges to v in $\mu(Y)$. Since $\varphi: Y \to C(\mu(X))$ is continuous by Lemma 3, $\{\varphi(H_r)\}$ is a Cauchy filter base in $C(\mu(X))$ with respect to the finest uniformity, and hence by Lemma 2 $\{\varphi(H_r)\}$ converges to some $K \in C(\mu(X))$. Suppose that $(\cap \operatorname{cl}_{\mu(X)} F_{\alpha}) \cap K = \emptyset$. Then for each point u of K there exists $F_{\alpha(u)}$ of \mathfrak{F} such that $u \in \mu(X) - \operatorname{cl}_{\mu(X)} F_{\alpha(u)}$. Therefore there exists a finite number of points $\{u_1, \dots, u_n\}$ of K such that

$$K \subset \bigcup_{i=1}^{n} (\mu(X) - \operatorname{cl}_{\mu(X)} F_{\alpha(u_i)}),$$

since K is compact. Let F_{β} be an element of \mathfrak{F} such that $F_{\beta} \subset F_{\alpha(u_i)}$, $i=1, \dots, n$. Then we have

$$\bigcup_{i=1}^{n} (\mu(X) - \operatorname{cl}_{\mu(X)} F_{\alpha(u_i)}) \cap F_{\beta} = \emptyset.$$

Let O be a regularly open set in $\mu(X)$ such that

$$K \subset O \subset \operatorname{cl}_{\mu(X)} O \subset \bigcup_{i=1}^{n} (\mu(X) - \operatorname{cl}_{\mu(X)} F_{\alpha(u_i)}).$$

Since $\{f^{-1}(H_r)\}$ converges to K in $C(\mu(X))$, we have $f^{-1}(H_r) \subset O$ for some $H_r \in \mathfrak{G}_Y$, and hence $\mu(f)^{-1}(G_r) \subset O$. This shows that $\mu(f)^{-1}(G_r) \cap F_{\beta} = \emptyset$, that is, $G_r \cap \mu(f)(F_{\beta}) = \emptyset$, which is a contradiction. Therefore we have $(\cap cl_{\mu(X)}F) \cap K \neq \emptyset$. Consequently \mathfrak{F} has a cluster point in $\mu(X)$. Moreover from the fact mentioned above it is easily seen that $\mu(f): \mu(X) \to \mu(Y)$ is surjective. Hence $\mu(f): \mu(X) \to \mu(Y)$ is perfect. Finally, by [10, Theorem 4.4], $\beta(f): \beta(X) \to \beta(Y)$ is an open map. Therefore it follows that $\mu(f)$ is an open map. Thus we complete the proof.

Corollary 4. Let $f: X \rightarrow Y$ be an open perfect map. Then the following statements are valid.

(a) Y is topologically complete if and only if X is topologically complete.

(b) Y is realcompact if and only if X is realcompact (Frolik [2]).

This corollary follows from Theorem 1 and the fact that the pre-

No. 1]

image of a topologically complete (realcompact) space under a perfect map is also topologically complete (resp. realcompact).

A continuous map f from a space X onto a space Y is called a WZ-map (Isiwata [10]) if $\beta(f)^{-1}(y) = \operatorname{cl}_{\beta(X)} f^{-1}(y)$ for each $y \in Y$. Every closed map is a WZ-map. The following is a slight generalization of Theorem 1.

Theorem 5. If $f: X \to Y$ is an open WZ-map such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$, then $\mu(f): \mu(X) \to \mu(Y)$ and $\nu(f): \nu(X) \to \nu(Y)$ are open perfect.

Proof. Let $X_0 = \beta(f)^{-1}(Y)$. Since $\beta(f)^{-1}(y) = \operatorname{cl}_{\beta(X)} f^{-1}(y)$ and $\operatorname{cl}_{\mu(X)} f^{-1}(y)$ is compact, we have $X \subset X_0 \subset \mu(X) \subset \nu(X)$. Hence it follows that $\mu(X_0) = \mu(X)$ and $\nu(X_0) = \nu(X)$ ([14], [3]). On the other hand, $\mu(f) : \mu(X_0) \to \mu(Y)$ and $\nu(f) : \nu(X_0) \to \nu(Y)$ are open perfect by Theorem 1, since $\beta(f) | X_0 : X_0 \to Y$ is an open perfect map. Thus the theorem holds.

Corollary 6. Let $f: X \rightarrow Y$ be an open WZ-map such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$. Then the following statements are valid.

(a) Y is pseudo-compact if and only if X is pseudo-compact.

(b) Y is pseudo-paracompact (pseudo-Lindelöf) if and only if X is pseudo-paracompact (resp. pseudo-Lindelöf).

Following Morita [14], a space X is said to be pseudo-paracompact (resp. Lindelöf) if $\mu(X)$ is paracompact (resp. Lindelöf). In Corollary 6, (a) was proved by Isiwata [10] as a generalization of a theorem of Okuyama and Hanai [16], and the 'only-if' part of (b) was proved by Hoshina [5].

Concerning a (not necessarily open) quasi-perfect map, Morita [14] proved the following: If f is a quasi-perfect map from an M-space X onto an M-space Y, then $\mu(f): \mu(X) \rightarrow \mu(Y)$ is a perfect map. As a generalization of this result, we can prove the following theorem.

Theorem 7. Let X and Y be the spaces each of which is the preimage of a topologically complete space under a quasi-perfect map. If $f: X \rightarrow Y$ is a quasi-perfect map, then $\mu(f): \mu(X) \rightarrow \mu(Y)$ is a perfect map.

To prove Theorem 7, we use the following lemmas.

Lemma 8 (Ishii [9]). If f is a quasi-perfect map from a space X onto a topologically complete space Y, then $\mu(f): \mu(X) \rightarrow Y$ is perfect.

Lemma 9 (Kljušin [6]). Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be surjective. If $h=g \circ f: X \rightarrow Z$ is perfect, then f and g are perfect.

Proof of Theorem 7. Let $g: Y \to Z$ be a quasi-perfect map from Y onto a topologically complete space Z. Then $h = g \circ f: X \to Z$ is a quasi-perfect map, and hence $\mu(h): \mu(X) \to Z$ is a perfect map by Lemma 8. Let $Y_0 = \mu(f)(\mu(X))$. Since $\mu(h) = \mu(g \circ f) = \mu(g) \circ \mu(f), \ \mu(g) | Y_0: Y_0 \to Z$ is perfect by Lemma 9. Hence it follows that Y_0 is topologically

complete, which implies that $Y_0 = \mu(Y)$. Therefore $\mu(f): \mu(X) \to \mu(Y)$ is perfect by Lemma 9. Thus we complete the proof.

Corollary 10. Let X and Y be the spaces each of which is the preimage of a topologically complete space under a quasi-perfect map, and let $f: X \rightarrow Y$ be a quasi-perfect map. Then Y is pseudo-paracompact (pseudo-Lindelöf) if and only if X is pseudo-paracompact (resp. pseudo-Lindelöf).

Remark. By Lemma 8, a space X is the preimage of a paracompact space under a quasi-perfect map if and only if X is a pseudoparacompact space which is the preimage of a topologically complete space under a quasi-perfect map.

Applying Theorem 7, we can prove the following theorem.

Theorem 11. Let Y be an M^* -space ([7]). Then the following statements are equivalent.

(a) Y is the preimage of a topologically complete space under a quasi-perfect map.

(b) Y is an M-space.

Proof. Since $(b) \rightarrow (a)$ is obvious, we shall prove $(a) \rightarrow (b)$. Since Y is an M^* -space, there exists a perfect map f from an M-space X onto Y by Nagata's theorem [15]. Hence by Theorem 7 $\mu(f): \mu(X) \rightarrow \mu(Y)$ is a perfect map. Since $\mu(X)$ is a paracompact M-space by Morita's theorem [14] and the image of a paracompact M-space under a perfect map is also a paracompact M-space (cf. Fillipov [1], Ishii [7], [8] and Morita [13]), $\mu(Y)$ is a paracompact M-space. This implies that Y is an M-space ([14]). Since each M^* -space is countably paracompact ([7]), Y is an M-space ([11]). Thus we complete the proof.

We note that Theorem 11 is also deduced directly from Lemma 8.

References

- V. V. Filippov: On the perfect image of a paracompact p-space. Dokl. Akad. Nauk SSSR, 176 (1967); Soviet Math. Dokl., 8, 1151-1153 (1967).
- [2] Z. Frolik: Applications of complete family of continuous functions to the theory of Q-spaces. Czech. Math. J., 11, 115-133 (1961).
- [3] L. Gillman and M. Jerison: Rings of Continuous Functions. Van Nostrand, Princeton, N. J. (1960).
- [4] M. Henriksen and J. R. Isbell: Some properties of compactifications. Duke J. Math., 25, 83-105 (1958).
- [5] T. Hoshina: On pseudo-paracompactness and continuous mappings. Proc. Japan Acad., 48, 581-584 (1972).
- [6] V. Kljušin: Perfect mappings of paracompact spaces. Soviet Math., 5, 1583-1586 (1964).
- [7] T. Ishii: On closed mappings and M-spaces. I, II. Proc. Japan Acad., 43, 752-756; 757-761 (1967).
- [8] ——: On M- and M*-spaces. Proc. Japan Acad., 44, 1028-1030 (1968).

No. 1]

- [9] T. Ishii: Paracompactness of topological completions. Proc. Japan Acad., 50, 33-38 (1974).
- [10] T. Isiwata: Mappings and spaces. Pacific J. Math., 20, 455-480 (1967).
- [11] —: Generalizations of *M*-spaces. I, II. Proc. Japan Acad., 45, 359-363, 364-367 (1969).
- [12] E. Michael: Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71, 151-182 (1951).
- [13] K. Morita: Some properties of M-spaces. Proc. Japan Acad., 43, 869-872 (1967).
- [14] ——: Topological completions and *M*-spaces. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 10, 271–288 (1970).
- [15] J. Nagata: Problems on generalized metric spaces. II. Proc. Emory Topology Conference (1970).
- [16] A. Okuyama and S. Hanai: On pseudocompactness and continuous mappings. Proc. Japan Acad., 38, 444-447 (1962).
- [17] P. Zenor: On the completeness of the space of compact subsets. Proc. Amer. Math. Soc., 24, 190-192 (1970).