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Introduction. In the present paper we shall construct the funda-
mental solution U($) for a degenerate parabolic pseudo-differential
equation of the form

Lu= 3u + p(t x, D)u--O in (0 T) R
(0.1)

U[t=0--U
where p(t x, D) is a pseudo-differential operator of class ’(S.) which
satisfies conditions (cf. [1], [5])"

(i) There exist constant C and m (0__< m’ m) such that
(0.2) Rep(t; x,)C(}’ uniformly in t (OtT).

(ii) For any multi index a--(a,. ., an), fl=(fl," ’, fin) there exists
a constant C.. such that

(0.3) p(t x, )/Re p(t x, )[C,,<>
uniformly in t (0g t T),

where p("(t x,)-(3/3)". i3/3xx) ..( i3/3Xn)’p(t x,)

The fundamental solution U(t) will be found as a pseudo-differ-
ential operator of class S. with parameter t. Then the solution
the Cauchy problem (0.1) is given by u(t)-U(t)Uo for u0 e L and more-
over for u0 e L (lp) in case p=l, using that operators of class
,. are bounded in L or 0gpgl, in L’ for 0gl, p=l (see [1]-

[3]).
The solution U(t) is given in the form U(t)-e(t,O; x,D) where

e(t, s; x, D) is the solution of an operator equation
L,e(t,s;x,D)=O in t>s (ONs<tNT)
e(t, s x, D)t= I,

which can be reduced to an integral equation of the form

(0.a) (t, ; x, D) + v(t, ; x, D) +[:(t, ; x, D)V(, x, D)d=0,

where r(t, s; x, D) is a known operator of class S,: (.-)(+’. To solve
(0.4), we shall calculate the symbol for multi product of pseudo-differ-
ential operators in precise form by using oscillatory integrals in [4]
and [6].

1. Notations and Theorem. We shall denote by S:(0p1,
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c m c) the set of all C-symbols p(x, ) defined in R R, which
satisfy or multi-index c--(a, ..., a) and =(, ...,)
(1 1) Ip((x, )1

(x $) is defined as above. For afor some constants C[,, where p
symbol p(x, ) S we define a pseudo-differential operator by

Pu(x)=p(x, D)()=e’p(, )()g,
where d=(2)-d and () denotes the Pourier transform of a raidly
decreasing function (z) defined by

Definition 1.1. Pot a (z, )e S, we define semi-norms ], by
p,- max su {g(,

Chen, S, makes a Fr6chet space with these norms. t(S,) is the set
of all functions p(t; x, ) of classS which are continuous with respec
o parameter t for 0g tg T.

Definition 1.2 ([5]). We say {p(x,)}7=0 of S converges to a
p(x, ) S, weakly, if {p(x, )}7=0 is a bounded set of S and
(")( ) asj uniformly on R xK for any a, fl, where K is any()k

compact set in R=. We denote by w-,,,(S,) the set of all functions
p(t, s x, ) of class S (OgsgtgT) which are continuous with respect
o parameters t and s with weak topology of S.

Theorem. Under the assumptions (0.2) and (0.3) we can construct
E(t,s)=e(t,s x,D) w-,,(S,) (O<st<T) which satisfies the fol-
lowing conditions"

(A) L,tE(t,s)--O in t>s
(B) E(t, s),=
(C) For any suciently large N, we can write

e(t,s; x,)- e(t,s; x,)+(t--s)f(t,s; x,)

where
(C-l)
(c-2)
(C-3)
(C-4)
(C-5)

e(t, s x,
Co(t, s; x, )1 (t $ s) in S, weakly

e(t, s x, )0 (t s) in S;,-) weakly (]1)
-)(N+)f(t, s; x, ) e w-,(S, ( )

[ (")(t, 8; X, )l<C.,(t-8)<>2m-(-)(+)-l"l+ll for any a, fl.J N(#)

2. Proof of Theorem. As in [8], [7], we construct e(t, s x,
(0g s tg T) (] 0) in the following way.

+(t; ,) e,(t,; ,,)=0 in
(2.1)

eo(t, s ;x, )=1
and for
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/[ ](2.2) -ff+ p(t; x, ) e(t, s x, )-- --q(t, s x, ) in t s

e(t, s; x, )]t;=0,
where q(t, s; x, ) is defined by

j-1

(2.3) q(t, s; x, )=0 ’ 1--P()(t x, )e (t, s; x )

ejeCt(t, 8; x, ,):aj,,,,(t, s x, ,)exp (-;sp(a x,Set (]0) and

Then we

have by (2.1)(2.3) and (0.3) the ollowing estimates.
Proposition 1. We have

[a.,,(t, s; x,
]b.,.(t, s x, )<C, Re p(t x, J,-,

where w.,. and w(.. are defined by

w0,0,0= 1, 0,,=max {w, "+} ]a]+ ]#0
w..=max {, w"++} (]1)
.,.--max {, w,++v-} (]> 1)

and =[’: Re p(a; x,)da.

Now by the expansion theorem in [2], we can write or any N

a(PE)--p(t x, )e(t, s x, ) + p(")(t x, )
(2

e(.)(t, s x, ) + r,(t, s x, ).
Taking summation in ], it is clear by (2.1)(2.3) that

L, E +p e (t, s x, D) + q(t, s x, D)
=0 =0 =

(2.5) + r,(t, s x, D)
j=O

N

r.(t, s x, D)--r(t, s x, D).
=0

The following estimates are clear with the aid of Proposition 1

and (2.4).
Proposition 2. We have r,(t, s x, ) e w-t.(S. and

for any , fl
Ir,s$(t, s; x, )]C,,(t-s)(}-(-)(N+’-’"+’.

Put es(t, s;x, D)=k(t, s;x, D), then we have by (2.5)

L tK(t,s)=R(t,s) ints (OstgT)
(2.6) K(t, s)[t= I.

Now, we construct e(t, s; x, D) as the ollowing form"

e(t, , D)=(t, z, D) + (t,; ,D)p(e,;

hen, using (2.6), p(t, z, D)=(t, ) mus satisfy
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(2.7)

Set

and for ]_>_2

(2.8)

Then

L,tE(t, s)=R(t, s)+ (t, s)+iR(t, a)(a, s)da.

(t,s)=-R(t,s),

t(t
O(t, s)- a)_(a, s)da

_t. f:-(t, s)(s, s)(s, s)

(s_, s)ds_ds_.., ds.

s(t, s) =(t, s) + s(t, s)
(2.9) :

:R(t, ---R(t, s)- a) (a, s)da.

For a(O(t, s)) =(t, s x, ), we have the following

Proposition 3. We have some constants A,, and A,,, which are
independent of ], such that

(>(t, s; x, )lg(A,) (t-s)-(2.10) [(,)
(]-1)

(2.11) - ()(t, s; x, )<(A’.) (t-s)-’ (-1)

-)(N + 1))In view of Proposition 3, we have =e w-Ct,(S.
and (2.9) means that (t,s)=(t,s; x,D) given above satisfies (2.7).
Note that K(t, s) e w--,(S,.) and

l.(>r s; x, )[<C (t-s)()-+--+
Then we have the assertion of theorem.

Proof of Proposition 3. Using the oscillatory integral in [4], we
have from (2.8)

E- V’Yt(t, s x, )= ds_ ds O e- -
(t, s x, +) s, s+ x+ y, +

k=l =1

( )s_,s;x+ y, dyd...dy_d_
-)(N+ 1))Note e w-C,(S,. (, and rewrite

e-’: (1 +(+}0 [y [no)-(1 + +}no(__3)no)e-."
Then we have

](C) ds_,.

where noT(n/2) is an integer. If we take N such that
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(N+ 1) --n, then we get

I(t, s; x, )l<(Co) (t-s)-

By Proposition 2, we can prove (2.11) for a=fl-0. For any a, (2.10)
and (2.11) are proved in the same way.

Example.

i() +()L.t=-+ a(t) x

where a(t)e C[0, T], a(t)>=O, and b and m are positive integers such
that b + l>m.
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