3. The Fundamental Solution for a Degenerate Parabolic Pseudo-Differential Operator

By Chisato Tsutsumi
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

Introduction. In the present paper we shall construct the fundamental solution $U(t)$ for a degenerate parabolic pseudo-differential equation of the form

$$
\left\{\begin{array}{l}
L u=\frac{\partial u}{\partial t}+p(t ; x, D) u=0 \quad \text { in }(0, T) \times R^{n} \tag{0.1}\\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

where $p(t ; x, D)$ is a pseudo-differential operator of class $\mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m}\right)$ which satisfies conditions (cf. [1], [5]):
(i) There exist constant C and $m^{\prime}\left(0 \leqq m^{\prime} \leqq m\right)$ such that

$$
\begin{equation*}
\operatorname{Re} p(t ; x, \xi) \geqq C\langle\xi\rangle^{m^{\prime}} \quad \text { uniformly in } t \quad(0 \leqq t \leqq T) . \tag{0.2}
\end{equation*}
$$

(ii) For any multi index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$ there exists a constant $C_{\alpha, \beta}$ such that

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(t ; x, \xi) / \operatorname{Re} p(t ; x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|} \tag{0.3}
\end{equation*}
$$

uniformly in $t \quad(0 \leqq t \leqq T)$,
where $p_{(\beta)}^{(\alpha)}(t ; x, \xi)=\left(\partial / \partial \xi_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial \xi_{n}\right)^{\alpha_{n}}\left(-i \partial / \partial x_{1}\right)^{\beta_{1}} \cdots\left(-i \partial / \partial x_{n}\right)^{\beta_{n}} p(t ; x, \xi)$, $|\alpha|=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|,|\beta|=\left|\beta_{1}\right|+\cdots+\left|\beta_{n}\right|$ and $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$.

The fundamental solution $U(t)$ will be found as a pseudo-differential operator of class $S_{\rho, \delta}^{0}$ with parameter t. Then the solution of the Cauchy problem (0.1) is given by $u(t)=U(t) u_{0}$ for $u_{0} \in L^{2}$ and moreover for $u_{0} \in L^{p}(1<p<\infty)$ in case $\rho=1$, using that operators of class $S_{\rho, \delta}^{m}$ are bounded in L^{2} for $0 \leqq \delta<\rho \leqq 1$, in L^{p} for $0 \leqq \delta<1, \rho=1$ (see [1][3]).

The solution $U(t)$ is given in the form $U(t)=e(t, 0 ; x, D)$ where $e(t, s ; x, D)$ is the solution of an operator equation

$$
\left\{\begin{array}{l}
L_{x, t} e(t, s ; x, D)=0 \quad \text { in } t>s \quad(0 \leqq s<t \leqq T) \\
\left.e(t, s ; x, D)\right|_{t=s}=I,
\end{array}\right.
$$

which can be reduced to an integral equation of the form

$$
\begin{equation*}
r_{N}(t, s ; x, D)+\varphi(t, s ; x, D)+\int_{s}^{t} r_{N}(t, \sigma ; x, D) \varphi(\sigma, s ; x, D) d \sigma=0 \tag{0.4}
\end{equation*}
$$

where $r_{N}(t, s ; x, D)$ is a known operator of class $S_{\rho, \delta}^{m-(\rho-\delta)(N+1)}$. To solve (0.4), we shall calculate the symbol for multi product of pseudo-differential operators in precise form by using oscillatory integrals in [4] and [6].

1. Notations and Theorem. We shall denote by $S_{\rho, \delta}^{m}(0 \leqq \delta<\rho \leqq 1$,
$-\infty<m<\infty)$ the set of all C^{∞}-symbols $p(x, \xi)$ defined in $R_{x}^{n} \times R_{\xi}^{n}$, which satisfy for multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha, \beta}^{\prime}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|} \tag{1.1}
\end{equation*}
$$

for some constants $C_{\alpha, \beta}^{\prime}$, where $p_{(\beta)}^{(\alpha)}(x, \xi)$ is defined as above. For a symbol $p(x, \xi) \in S_{\rho, \delta}^{m}$ we define a pseudo-differential operator by

$$
P u(x)=p(x, D) u(x)=\int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi,
$$

where $d \xi=(2 \pi)^{-n} d \xi$ and $\hat{u}(\xi)$ denotes the Fourier transform of a rapidly decreasing function $u(x)$ defined by

$$
\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x
$$

Definition 1.1. For a $p(x, \xi) \in S_{\rho, \delta}^{m}$ we define semi-norms $|p|_{m, k}$ by

$$
|p|_{m, k}=\max _{|\alpha|+|\beta| \leq k} \sup _{(x, \xi)}\left\{\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right|\langle\xi\rangle^{-m+\rho|\alpha|-\delta|\beta|}\right\}
$$

then, $S_{\rho, \delta}^{m}$ makes a Fréchet space with these norms. $\quad \mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m}\right)$ is the set of all functions $p(t ; x, \xi)$ of class $S_{\rho, \delta}^{m}$ which are continuous with respect to parameter t for $0 \leqq t \leqq T$.

Definition 1.2 ([5]). We say $\left\{p_{j}(x, \xi)\right\}_{j=0}^{\infty}$ of $S_{\rho, \delta}^{m}$ converges to a $p(x, \xi) \in S_{\rho, \delta}^{m}$, weakly, if $\{p(x, \xi)\}_{j=0}^{\infty}$ is a bounded set of $S_{\rho, \delta}^{m}$ and $p_{j(\beta)}^{(\alpha)}(x, \xi)$ $\rightarrow p_{(\beta)}^{(\alpha)}(x, \xi)$ as $j \rightarrow \infty$ uniformly on $R_{x}^{n} \times K$ for any α, β, where K is any compact set in R^{n}. We denote by $w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{m}\right)$ the set of all functions $p(t, s ; x, \xi)$ of class $S_{\rho, \delta}^{m}(0 \leqq s \leqq t \leqq T)$ which are continuous with respect to parameters t and s with weak topology of $S_{\rho, \delta}^{m}$.

Theorem. Under the assumptions (0.2) and (0.3) we can construct $E(t, s)=e(t, s ; x, D) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{m}\right)(0 \leqq s \leqq t \leqq T)$ which satisfies the following conditions:
(A) $L_{x, t} E(t, s)=0 \quad$ in $t>s$
(B) $\left.E(t, s)\right|_{t=s}=I$
(C) For any sufficiently large N, we can write

$$
e(t, s ; x, \xi)=\sum_{j=0}^{N} e_{j}(t, s ; x, \xi)+(t-s) f_{N}(t, s ; x, \xi)
$$

where
(C-1) $\quad e_{j}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{-(\rho-\delta) j}\right)$
(C-2) $\quad e_{0}(t, s ; x, \xi) \rightarrow 1(t \downarrow s)$ in $S_{\rho, \delta}^{0}$ weakly
(C-3) $\quad e_{j}(t, s ; x, \xi) \rightarrow 0(t \downarrow s)$ in $S_{\rho, \delta}^{-(\rho-\delta) j}$ weakly ($j \geqq 1$)
(C-4) $f_{N}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \hat{j}}^{m-(\rho-\delta)(N+1)}\right)$
(C-5) $\left|f_{N(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta}(t-s)\langle\xi\rangle^{2 m-(\rho-\delta)(N+1)-\rho|\alpha|+\delta|\beta|}$ for any α, β.
2. Proof of Theorem. As in [8], [7], we construct $e_{j}(t, s ; x, \xi)$ $(0 \leqq s \leqq t \leqq T)(j \geqq 0)$ in the following way.

$$
\left\{\begin{array}{l}
{\left[\frac{\partial}{\partial t}+p(t ; x, \xi)\right] e_{0}(t, s ; x, \xi)=0 \quad \text { in } t>s} \tag{2.1}\\
\left.e_{0}(t, s ; x, \xi)\right|_{t=s}=1
\end{array}\right.
$$

and for $j \geqq 1$

$$
\left\{\begin{array}{l}
{\left[\frac{\partial}{\partial t}+p(t ; x, \xi)\right] e_{j}(t, s ; x, \xi)=-q_{j}(t, s ; x, \xi) \quad \text { in } t>s} \tag{2.2}\\
\left.e_{j}(t, s ; x, \xi)\right|_{t=s}=0
\end{array}\right.
$$

where $q_{j}(t, s ; x, \xi)$ is defined by

$$
\begin{equation*}
q_{j}(t, s ; x, \xi)=\sum_{k=0}^{j-1} \sum_{|\alpha|+k=j} \frac{1}{\alpha!} p^{(\alpha)}(t ; x, \xi) e_{k(\alpha)}(t, s ; x, \xi) . \tag{2.3}
\end{equation*}
$$

Set $e_{j(\beta)}^{(\alpha)}(t, s ; x, \xi)=a_{j, \alpha, \beta}(t, s ; x, \xi) \exp \left(-\int_{s}^{t} p(\sigma ; x, \xi) d \sigma\right)(j \geqq 0)$ and $q_{j(\beta)}^{(\alpha)}(t, s ; x, \xi)=b_{j, \alpha, \beta}(t, s ; x, \xi) \exp \left(-\int_{s}^{t} p(\sigma ; x, \xi) d \sigma\right)(j \geqq 1)$. Then we have by (2.1) $\sim(2.3)$ and (0.3) the following estimates.

Proposition 1. We have

$$
\begin{aligned}
& \left|a_{j, \alpha, \beta}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|-(\rho-\delta) j} \omega_{j, \alpha, \beta}, \\
& \left|b_{j, \alpha, \beta}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta} \operatorname{Re} p(t ; x, \xi)\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|-(\rho-\delta))} \omega_{j, \alpha, \beta}^{\prime}
\end{aligned}
$$

where $\omega_{j, \alpha, \beta}$ and $\omega_{j, \alpha, \beta}^{\prime}$ are defined by

$$
\begin{aligned}
& \omega_{0,0,0}=1, \quad \omega_{0, \alpha, \beta}=\max \left\{\omega, \omega^{|\alpha|+\mid \beta \beta}\right\}|\alpha|+|\beta| \neq 0 \\
& \omega_{j, \alpha, \beta}=\max \left\{\omega^{2}, \omega^{|\alpha|+|\beta|+2 j}\right\} \quad(j \geqq 1) \\
& \omega_{j, \alpha, \beta}^{\prime}=\max \left\{\omega, \omega^{|\alpha|+|\beta|+2 j-1}\right\} \quad(j \geqq 1)
\end{aligned}
$$

and $\omega=\int_{s}^{t} \operatorname{Re} p(\sigma ; x, \xi) d \sigma$.
Now by the expansion theorem in [2], we can write for any N

$$
\begin{align*}
\sigma\left(P E_{j}\right)= & p(t ; x, \xi) e_{j}(t, s ; x, \xi)+\sum_{0<|\alpha| \leqq N-j} \frac{1}{\alpha!} p^{(\alpha)}(t ; x, \xi) \tag{2.4}\\
& \times e_{j(\alpha)}(t, s ; x, \xi)+r_{N, j}(t, s ; x, \xi) .
\end{align*}
$$

Taking summation in j, it is clear by (2.1) $\sim(2.3)$ that

$$
\begin{align*}
L_{x, t}\left(\sum_{j=0}^{N} E_{j}\right)= & \sum_{j=0}^{N}\left[\left(\frac{\partial}{\partial t}+p\right) e_{j}\right](t, s ; x, D)+\sum_{j=1}^{N} q_{j}(t, s ; x, D) \\
& +\sum_{j=0}^{N} r_{N, j}(t, s ; x, D) \tag{2.5}\\
= & \sum_{j=0}^{N} r_{N, j}(t, s ; x, D) \equiv r_{N}(t, s ; x, D) .
\end{align*}
$$

The following estimates are clear with the aid of Proposition 1 and (2.4).

Proposition 2. We have $r_{N, j}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{m-(\rho-\delta)(N+1)}\right)$ and for any α, β

Put $\sum_{j=0}^{N} e_{j}(t, s ; x, D)=k_{N}(t, s ; x, D)$, then we have by (2.5)

$$
\left\{\begin{array}{l}
L_{x, t} K_{N}(t, s)=R_{N}(t, s) \quad \text { in } t>s \quad(0 \leqq s<t \leqq T) \tag{2.6}\\
\left.K_{N}(t, s)\right|_{t=s}=I .
\end{array}\right.
$$

Now, we construct $e(t, s ; x, D)$ as the following form:

$$
e(t, s ; x, D)=k_{N}(t, s ; x, D)+\int_{s}^{t} k_{N}(t, \sigma ; x, D) \varphi(\sigma, s ; x, D) d \sigma
$$

Then, using (2.6), $\varphi(t, s ; x, D)=\Phi(t, s)$ must satisfy

$$
\begin{equation*}
L_{x, t} E(t, s)=R_{N}(t, s)+\Phi(t, s)+\int_{s}^{t} R_{N}(t, \sigma) \Phi(\sigma, s) d \sigma \tag{2.7}
\end{equation*}
$$

Set

$$
\Phi_{1}(t, s)=-R_{N}(t, s)
$$

and for $j \geqq 2$

$$
\begin{align*}
\Phi_{j}(t, s)= & \int_{s}^{t} \Phi_{1}(t, \sigma) \Phi_{j-1}(\sigma, s) d \sigma \\
= & \int_{s}^{t} \int_{s}^{s_{1}} \cdots \int_{s}^{s_{j-2}} \Phi_{1}\left(t, s_{1}\right) \Phi_{1}\left(s_{1}, s_{2}\right) \Phi_{1}\left(s_{2}, s_{3}\right) \tag{2.8}\\
& \cdots \Phi_{1}\left(s_{j-1}, s\right) d s_{j-1} d s_{j-2} \cdots d s_{1} .
\end{align*}
$$

Then

$$
\begin{align*}
\sum_{j=1}^{l} \Phi_{j}(t, s) & =\Phi_{1}(t, s)+\sum_{j=2}^{l} \Phi_{j}(t, s) \tag{2.9}\\
& =-R_{N}(t, s)-\int_{s}^{t} R_{N}(t, \sigma) \sum_{j=1}^{l-1} \Phi_{j}(\sigma, s) d \sigma
\end{align*}
$$

For $\sigma\left(\Phi_{j}(t, s)\right)=\varphi_{j}(t, s ; x, \xi)$, we have the following
Proposition 3. We have some constants $A_{\alpha, \beta}$ and $A_{\alpha, \beta}^{\prime}$, which are independent of j, such that

$$
\begin{align*}
&\left|\varphi_{j(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq\left(A_{\alpha, \beta}\right)^{j} \frac{(t-s)^{j-1}}{(j-1)!}(t-s)\langle\xi\rangle^{2 m-\rho|\alpha|+\delta|\beta|-(\rho-\delta)(N+1)} \tag{2.10}\\
&\left.\mid \varphi_{j(\beta)}^{(\alpha)}\right) \tag{2.11}\\
&(t, s ; x, \xi) \left\lvert\, \leqq\left(A_{\alpha, \beta}^{\prime}\right)^{j} \frac{(t-s)^{j-1}}{(j-1)!}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|-(\rho-\delta)(N+1)} .\right.
\end{align*}
$$

In view of Proposition 3, we have $\sum_{j=1}^{\infty} \varphi_{j}=\varphi \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{m-(\rho-\delta)(N+1)}\right)$ and (2.9) means that $\Phi(t, s)=\varphi(t, s ; x, D)$ given above satisfies (2.7). Note that $K_{N}(t, s) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{0}\right)$ and

$$
\left|\varphi_{(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta}(t-s)\langle\xi\rangle^{2 m-\rho|\alpha|+\delta|\beta|-(\rho-\delta)(N+1)} .
$$

Then we have the assertion of theorem.
Proof of Proposition 3. Using the oscillatory integral in [4], we have from (2.8)

$$
\begin{aligned}
& \varphi_{j}(t, s ; x, \xi)=\int_{s}^{t} \int_{s}^{s_{1}} \cdots \int_{s}^{s_{j-2}} d s_{j-1} \cdots d s_{1}\left[O_{s}-\iint \cdots \int e^{-i \sum_{l}^{j-1} \eta_{l} \cdot y_{l}}\right. \\
& \quad \times \varphi_{1}\left(t, s_{1} ; x, \xi+\eta_{1}\right) \prod_{k=1}^{j-2} \varphi_{1}\left(s_{k}, s_{k+1} ; x+\sum_{l=1}^{k} y_{l}, \xi+\eta_{k+1}\right) \\
& \left.\quad \times \varphi_{1}\left(s_{j-1}, s ; x+\sum_{l=1}^{j-1} y_{l}, \xi\right) d y_{1} d \eta_{1} \cdots d y_{j-1} d \eta_{j-1}\right]
\end{aligned}
$$

Note $\varphi_{1} \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{m-(\rho-\delta)(N+1)}\right)$ and rewrite

$$
e^{-i y_{k} \cdot \eta_{k}}=\left(1+\left\langle\xi+\eta_{k}\right\rangle^{2 n_{0} \delta}\left|y_{k}\right|^{2 n_{0}}\right)^{-1}\left(1+\left\langle\xi+\eta_{k}\right\rangle^{2 n_{0} \delta}\left(-\Delta_{\eta_{k}} n_{0}^{n_{0}}\right) e^{-i y_{k} \cdot \eta_{k}} .\right.
$$

Then we have

$$
\begin{aligned}
\left|\varphi_{j}\right| \leqq & \left(C_{n_{0}}\right)^{j} \int_{s}^{t} \int_{s}^{s_{1}} \cdots \int_{s}^{s_{j-2}} d s_{j-1} \cdots d s_{1}\langle\xi\rangle^{m-(\rho-\delta)(N+1)} \\
& \times \prod_{k=1}^{j-1} \iint\left(1+\left\langle\xi+\eta_{k}\right\rangle^{2 n_{0} \delta}\left|y_{k}\right|^{2 n_{0}}\right)^{-1}\left\langle\xi+\eta_{k}\right\rangle^{m-(\rho-\delta)(N+1)} d y_{k} d \eta_{k}
\end{aligned}
$$

where $n_{0}>(n / 2)$ is an integer. If we take N such that $m-(\rho-\delta)$
$(N+1)<-n$, then we get

$$
\left|\varphi_{j}(t, s ; x, \xi)\right| \leqq\left(C_{n_{0}}\right)^{j} \frac{(t-s)^{j-1}}{(j-1)!}\langle\xi\rangle^{m-(\rho-\delta)(N+1)} .
$$

By Proposition 2, we can prove (2.11) for $\alpha=\beta=0$. For any α, β (2.10) and (2.11) are proved in the same way.

Example.

$$
L_{x, t}=\frac{\partial}{\partial t}+a(t)|x|^{2 b}(-\Delta)^{m}+(-\Delta)
$$

where $a(t) \in C^{\infty}[0, T], a(t) \geqq 0$, and b and m are positive integers such that $b+1>m$.

References

[1] L. Hörmander: Pseudo-differential operator and hypoelliptic equations. Singular Integrals, Proc. Symposia Pure Math., 10, 138-183 (1967).
[2] H. Kumano-go: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo, 17, 31-50 (1970).
[3] H. Kumano-go and M. Nagase: L_{p}-theory of pseudo-differential operators. Proc. Japan Acad., 46, 138-142 (1970).
[4] H. Kumano-go and K. Taniguchi: Oscillatory integrals of symbols of pseudo-differential operators on R^{n} and operator of Fredholm type. Proc. Japan Acad., 49, 397-402 (1973).
[5] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudodifferential operators with applications. Osaka J. Math., 10, 147-174 (1973).
[6] H. Kumano-go: Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem (to appear).
[7] T. Matsuzawa: On some degenerate parabolic equations. II (to appear).
[8] S. Mizohata: Hypoellipticité des équation paraboliques. Bull. Soc. Math. France, 85, 15-50 (1957).

