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In this paper we are concerned with the oscillatory behavior of
solutions of the nonlinear differential equation
(A) x(n)(t) + q(t)(x(n-)(t)) + p(t)f(x(g(t)))=O.
Our main purpose is to extend to equation (A) some of the recent re-
sults regarding oscillation of solutions of the differential equation with
a time lag
(B) x()(t) + p(t)f(x(g(t)))= 0
and the differential equation without a time lag
(C) x()(t) + q(t)(x-)(t)) + p(t)f(x(t))=O.

We consider only solutions x(t) of (A) which exist on some half-
line [T, c). A solution x(t) of (A) is said to be oscillatory (or to
oscillate) if x(t) has a sequence of zeros {t}= such that lim t=o
otherwise, a solution is said to be nonoscillatory.

Throughout this paper the following assumptions are assumed to
hold:

(a) f e C(R) CI(R--{0}), R--(-c, c), and
xf(x)>O, f’(x)>=O for all x eR--{0};

(b) e C(R), and there is a constant M>0 such that
O<y(y)<=My for all y e R--{0}

(c) g e C(R+), R+=(0, c), g(t)<=t, g’(t)>O for all t e R/, and
lim,. g(t)---- c

(d) p e C(R/), and p(t) 0 for all t e R/

(e) q e C(R/), and there is a nonnegative function m e C(R/) such
that q(t)<m(t) for all t e R+ and limt. Q(t, T)=c for any
fixed T e R/, where

Q(t, T)=;r exp (--Mf: m(u)du)ds.
Lemma. Suppose that assumptions (a)--(e) hold. If x(t) is a

nonoscillatory solution of (A), then there is a T such that x(t)x(n-)(t)
> 0 for all t e [T, c).

Proof. We may assume that x(t)>0 on [to, ), since a parallel
argument holds when x(t) <0 on [to, oz). Since limt. g(t) c, there
is t>=tosuchthatx(g(t))>Oon[t, c). Supposethat there ist* e [t, c)
at which x(n-)(t*)--O. From (A) we see that
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x(n)(t*) p(t*)f(x(g(t*))) < O.
It ollows that x(n-)(t) cannot have a zero larger than t*, hence x(-)(t)
is eventually o constant sign.

Suppose that x(-)(t) 0 on [T, c). Multiplying (A) by x(-)(t),
integrating over [T, t] and observing that

p(s)f(x(g(s)))x-)(s)ds 0,
JT

we find

ftT x(n)(8)x(n-)(8)d8 -tT q(8)(x(n-)(8))x(n-)(8)d8 O,

from which using (b) we have

[x(n-)(t)]> [x(n-)(T)].-- 2irm(s)[x(n-)(s)]d8.
Hence, by the Langenhop inequality [7],

[x(n-1)(t)][x(n-1)(T)] exp (--2Mrm(u)du),
which, in view of the hypothesis that x(-)(t)O on [T, ), yields

x(n-)(t)xn-)(T) exp (--MI;m(u)du).
Integrating the above inequality over [T, t], we obtain

x(n-)(t) x(n-)(T) + x(-)(T)Q(t, T).
Since x(n-i)(T)0, by (e), we conclude that

lira x(n-)(t)-- and hence lira x(t)-- .
The contradiction completes the proo of the lemma.

Remark 1. This lemma is essentially that given by Kartsatos and
Onose [2, Lemma]. Our proo is based on the method used by Baker
or second order ordinary differential equations [1, Lemma 1].

Theorem 1. In addition to (a)--(e) assume that q(t)O for all
t e R+, and that for some aO

(1) dx <, <.
f(x) f(x)

If
( 2 [g(t)]n-p(t)dt c,

then, for n even, every solution of (A) is oscillatory and, for n odd,
every solution of (A) is either oscillatory or tending monotonically to
zero as t-c together with its first n-1 derivatives.

Theorem 2. In addition to (a)--(e) assume that q(t)O for all
t e R+, and that there exist positive numbers M, 20, a<l such that for
22o
( 3 ) f(x) >=M"f(x) if x 0 and f(x) M"f(x) if x O.
If
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( 4 ) [(t)](-,)(t)t oo,

then the conclusion of Theorem 1 holds.
Proof of Theorem 1. Assume that equation (A) has a nonos-

cillatory solution x(t). In view of Lemma, we may suppose without
loss of generality that there is a T such that x(t) 0 and x(-)(t) 0 on
[T, ). Since this implies that q(t)(x(-’(t))>=0 on [T, ), it follows
that
( 5 ) x)(t) + p(t)f(x(g(t))) <= O.
Now, arguing exactly as in the proof of Theorem 2 of [4] or Theorem
1 of [6], we can derive rom (5) the contradiction

[g(t)]n-p(t)dt c.

We omit the details.
Proof of Theorem 2. Apply the techniques used in the proof of

Theorem 3 of [4] or Theorem 2 of [5] to derive from (5) the contradic-
tion

[g(t)](-’p(t)dt oo.

Remark 2. Theorems 1 and 2 extend some of the recent results
[1], [2], [4-6], [8], [9] regarding oscillation of equations (B) and (C).

Theorem 3. In addition to (a)--(e) assume that there is a constant
KO such that

( 6 ) q(t) >=- K for all sufficiently large t.
t

( 7 ) t-p(t)dt= c,

then, for n even, every bounded solution of (A) oscillates and, for n
odd, every bounded solution of (A) either oscillates or tends monoton-
ically to zero as t--, together with its first n--2 derivatives.

Proof. Suppose that x(t) is a bounded nonoscillatory solution of
(A). As before, we may assume that x(t)0 and x(-(t)>0 on [T, c).
From a lemma of Kiguradze [3, Lemma 2] it follows that
( 8 ) (--1)+x(-)(t)__>0 on [T, oo), ]=1, 2, ..., n--1.
Since x’(t) is of constant sign on IT, ), there exists a finite limit
limt x(t)=x(). If n is even, then x’(t)>=O by (8), and hence x(oo)
)0, while, if n is odd, x’(t)<=O by (8), so that x())0 or x()=0.

Suppose that x())0. Then, there exist k)0 and Tx>=T such
that f(x(g(t)))k on [T, ). It follows from (A) and (b) that

( 9 x(t)-.KMx(-(t) + kp(t) <= 0 on [T, ).
t

Multiplying (9) by t- and integrating over [T, t], we obtain
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(10) s-x()(s)ds--KM s-x(-)(s)ds + s-p(s)ds< O,
T T T

which, after successive integration by parts, yields
tn-x(-)(t)-- (n-- 1)t-x(n-)(t) +... -k (-- 1)n-(n 1) tx’(t)- (-- 1)n-l(n 1) x(t)

(11) --KM{t-x(n-)(t)--(n--2)tn-x(-)(t) +""
+(--1)-(n--2) tx’(t)+(--1)n-(n--2)! x(t)}

+ s-Ip(s)ds C,
T

Using (8) and the boundedness of x(t), wewhere C is a constant.
conclude from (11) that

which contradicts (7). Therefore, we must have x(oo)=0. Clearly,
this is possible only when n is odd, and in this case the derivatives
x()(t), ]-- 1, ., n--2, also tend monotonically to zero as t--.oo. This
completes the proof.

Remark :. When g(t)=_t, Theorem 3 improves a result of
Kartsatos and Onose [2, Theorem 1].

Example 1o Theorem 3 implies that all bounded solutions of the
equation

x()-- --tl x() + t.6/.. x sgn x 0, 0 <_<1,_
are oscillatory. We note that this equation has an unbounded nonos-
cillatory solution x(t) t.

Theorem 4. Let n--2. In addition to (a)--(e) assume that condi-
tions (1), (6) and (7) are satisfied. Then all solutions of (C) are
oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (C) such that x(t)
0 and x’(t)O on [T, co). We multiply (C) by t/f(x(t)), integrate
over [T, t] and use (6) to obtain

tx’(t) --(KM+l)fr x’(t----) dt
f(x(t)) f(x(t))

(12)
-k tT 8f’(x(8))[x’(8)] tT[f(x(S))]

ds-t- sp(s)ds C,

where C is a constant. Taking the limit as t- and using (1) and (7)
we arrive at the contradiction that x’(t) 0 for all sufficiently large t.
This completes the proof.

Example 2. The conclusion of Theorem 4 is false for the retarded
differential equation (A). In act, the equation

1 x’(t) + [x(t/D]=0x"(t)-T
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has a nonoscillatory solution x(t)=t, though conditions (1), (6) and (7)
are satisfied.
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