49. On Fixed Point Theorem

By Yasujirô NAGAKURA Science University of Tokyo

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1974)

In this paper we shall prove a fixed point theorem by the method of ranked space. The linear operator in the following theorem is not necessarily continuous. Throughout this note, g, f, x, y, z, \cdots will denote points of a ranked space, U_i, V_i, \cdots neighbourhoods at the origin with rank i and $\{U_{\tau_i}\}, \{V_{\tau_i}\}, \cdots$ fundamental sequences of neighbourhoods with respect to the origin. Let a linear space E be a ranked space with indicator ω_0 , which satisfies the following conditions:

- (1) For any neighbourhood U_i , the origin belongs to U_i .
- (2) For any neighbourhood U_i , and for any integer n, there is
- (E, 1) an m such that $m \ge n$ and $U_m \subseteq U_i$.
 - (3) The space E is the neighbourhood at the origin with rank zero.

Furthermore we define $g + U_i$ as a neighbourhood at point g with rank *i*. Then the space E is called a pre-linear ranked space. Moreover the space E having the following conditions (E, 2) and (E, 3), is called a linear ranked space.

(E, 2) The following conditions are the modification of the Washihara's conditions [3].

(R, L_i) For any $\{U_{r_i}\}$ and $\{V_{r'_i}\}$, there is a $\{W''_{r_i}\}$ such that $U_{r_i} + V_{r'_i} \subseteq W_{r'_i}$.

(R, L₂)" For any $\{U_{r_i}\}$ and any $\lambda > 0$, there are a $\{U_{r'_i}\}$, all of whose members belong to $\{U_{r_i}\}$ and a natural number j such that $\lambda U_{r_i} \subseteq U_{r'_i}$ for all $i \ (i \ge j)$.

(E, 3) For any neighbourhood U_i and any λ ($0 \leq \lambda \leq 1$), $\lambda U_i \subseteq U_i$.

Definition 1 (T_1 -space). A pre-linear ranked space E is called a T_1 -space if for any $g, f (g \neq f, g \in E, f \in E)$ and any fundamental sequence at the origin $\{U_{r_i}\}$ there exists some U_{r_j} belonging to $\{U_{r_i}\}$ such that $g + U_{r_i} \ni f$.

Definition 2 (T_2 -space). A pre-linear ranked space E is called a T_2 -space if for any $g, f (g \neq f, g \in E, f \in E)$ and any fundamental sequence at the origin $\{U_{r_i}\}$ there exist some U_{r_j} and U_{r_k} belonging to $\{U_{r_i}\}$ such that $(g + U_{r_i}) \cap (f + U_{r_k}) = \phi$.

Lemma 1. Let E be a T_1 pre-linear ranked space, all of whose neighbourhoods at the origin are symmetric (U=-U). Then the space E is a T_2 -space. Definition 3 (*R*-convergent). Let *E* be a pre-linear ranked space. A sequence $\{g_i\}$ in *E* is called to be *R*-convergent to g_0 in *E* with respect to $\{U_{r_i}\}$ if there is a fundamental sequence $\{U_{r_i}\}$, all of whose members belong to $\{U_{r_i}\}$, such that $g_i \in g_0 + U_{r'_i}$ for all *i*. We say g_0 to be *R*-limiting point of $\{g_i\}$.

Definition 4 (*R*-closure, *R*-closed set). Let *E* be a pre-linear ranked space. The *R*-closure set \overline{S} of subset *S* in *E* with respect to $\{U_{\tau_i}\}$ is the set having the following properties: For any g ($g \in \overline{S}$) there are a sequence $\{g_i\}$ ($g_i \in S$) and a $\{U_{\tau_i}\}$, all of whose members belong to $\{U_{\tau_i}\}$, such that $g_i \in g + U_{\tau_i}$ for all *i*. If $\overline{S} = S$, we say that *S* is an *R*-closed set with respect to $\{U_{\tau_i}\}$.

Definition 5 (*R*-compact). Let *E* be a pre-linear ranked space. A subset *S* in *E* is called *R*-compact with respect to $\{U_{\tau_i}\}$ if the following conditions are satisfied:

(1) For any g $(g \in S)$ and any U_{r_j} $(U_{r_j} \in \{U_{r_i}\})$ there exists some λ $(\lambda > 0)$ such that $g \in \lambda U_{r_i}$.

(2) If for each g $(g \in S)$ there exists some U_g belonging to $\{U_{r_i}\}$ such that $S \subseteq \bigcup_{g \in S} (g + U_g)$, then we have a finite family $\{g_i\}_{i \in I}$ in S such that $S \subseteq \bigcup_{i \in I} (g_i + U_{g_i})$.

Lemma 2. Let E be a pre-linear ranked space and let K be an Rcompact subset with respect to $\{U_{\tau_i}\}$. Then for any sequence $\{g_i\}$ $(g_i \in K)$, there exist some subsequence $\{g_{n_i}\}$ from $\{g_i\}$ and a point g in K such that $\{g_{n_i}\}$ is R-convergent to g with respect to $\{U_{\tau_i}\}$. Moreover the set K is an R-closed set with respect to $\{U_{\tau_i}\}$, if the space E is T_2 space.

Lemma 3. Let E and F be two pre-linear ranked spaces and let a subset K be R-compact with respect to $\{U_{r_i}\}$ in E. Suppose T is a linear operator with $D(T)=D\supset K$, having the following property: There exists a fundamental sequence of neighbourhoods at the origin in F, $\{W_{r_i}\}$ such that $T(U_{r_i}\cap D)\subseteq W_{r_i}$ for all i. Then T(K) is R-compact with respect to $\{W_{r_i}\}$.

Proof. (1) Since K is R-compact, for any T(g) $(g \in K)$ and any $W'_{r'_i}$ $(W_{r'_i} \in \{W'_{r_i}\})$ there exists some λ $(\lambda > 0)$ such that

$$T(g) \in T(\lambda(U_{\tau_{i}} \cap D)) \subseteq \lambda W_{\tau'_{i}}.$$

(2) Suppose that for each $f(f \in T(K))$ there exists some W_f belonging to $\{W_{r_i}\}$ such that $T(K) \subseteq \bigcup_{f \in T(k)} (f + W_f)$. By our hypotheses, for W_f and any $g (g \in T^{-1}(f))$ there exists some $U_g (U_g \in \{U_{r_i}\})$ such that $\bigcup_{g \in T^{-1}(f)} (g + U_g \cap D) \subseteq T^{-1}(f + W_f)$. Then we have

$$K \subseteq \bigcup_{f \in T(k)} \left[\bigcup_{g \in T^{-1}(f)} (g + U_g \cap D) \right] \subseteq \bigcup_{f \in T(k)} T^{-1}(f + W_f).$$

Since K is R-compact, this Lemma is true.

Fixed point theorem.

Let E be a T_1 linear ranked space with the following properties:

(1) A neighbourhood at the origin is symmetric.

(2) If $\{V_{r_i}\}$ is any fundamental sequence of neighbourhoods at the origin, for any member U belonging to $\{V_{r_i}\}$ and any element $x (x \in U)$ there is some $V(V \in \{V_{r_i}\})$ such that $x + V \subset U$.

And let non-empty convex subset K be R-compact with respect to $\{U_{r_i}\}$. Suppose T is a linear operator from E to E, whose domain is an invariant subspace D, such that $D \supseteq K$, $T(K) \subseteq K$ and if $\{V_{r_i}\}$ is any fundamental sequence of neighbourhoods at the origin, for any integer $m \ (m>0)$ and any two distinct points $x, y \ (x, y \in D)$ there is some $U(U \in \{V_{r_i}\})$ such that $x + (1/m)(U \cap D + T(U \cap D) + \cdots + T^m(U \cap D)) \oplus y$. Then there is some $v_0(v_0 \in K)$, for which $T(v_0) = v_0$.

Proof. For any positive integer n, we define $T_n = (1/n) \sum_{k=0}^{n-1} T^k$, where T^0 is the identity. Since K is convex, $T_n(K) \subseteq K$. As $T_n(T_m x)$ $=T_m(T_nx)$ for $x \in K, K \cap T_2(K) \cap \cdots \cap T_n(K)$ is non-empty. Since K is *R*-compact with respect to $\{U_{r_i}\}$, for U_{r_i} there is a finite sequence $x_1^{(1)} \cdots x_{i_1}^{(1)}$ contained in K such that $K \subseteq \bigcup_{j=1,\dots,i_1} (x_j^{(1)} + U_{r_1})$. For brevity, we denote $K \cap (x_j^{(1)} + U_{\tau_1}) = A_j^{(1)}$. Hence each point x in K belongs to an at most finite member of the above-mentioned sets $(x_j^{(1)} + U_r)$. Thus there is a V_x $(V_x \in \{U_{r_i}\})$, whose rank is larger than γ_1 , such that $x + V_x$ $\subseteq (x_j^{(1)} + U_{r_i})$ whenever $x \in (x_j^{(1)} + U_{r_i})$. Next, let V_x be the foregoing neighbourhood corresponding to each point x in K. Then we have $K \subseteq \bigcup_{x \in k} (x + V_x)$. Since K is R-compact, there is a finite sequence $x_1^{(2)} \cdots x_{i_2}^{(2)}$ contained in K such that $K \subseteq \bigcup_{j=1\cdots i_2} (x_j^{(2)} + U_{(2)}^{(j)})$, where $U_{(2)}^{(j)}$ $=V_{x^{(2)}}$. For brevity, we denote $K \cap T_2(K) \cap (x_j^{(2)} + U_{(2)}^{(j)}) = A_j^{(2)}$. Continue this process, then we have some finite family of sets $\{A_{i}^{(n)}\}_{j=1...i_{n}}$ for any positive integer n, where $A_j^{(n)} = K \cap T_2(K) \cap \cdots \cap T_n(K) \cap (x_j^{(n)} + U_{(n)}^{(j)})$ and $\bigcup_{j=1}^{i_n} A_j^{(n)} = K \cap T_2(K) \cap \cdots \cap T_n(K) \neq \phi$. Thus there is some finite sequence of positive integers j_1, \dots, j_n such that $A_{j_1}^{(1)} \supseteq \cdots \supseteq A_{j_n}^{(n)}$ and $A_{j_n}^{(n)} \neq \phi$. Hence if for $A_j^{(1)}$ we put $I(A_j^{(1)}) = \sup \{\alpha : \exists A_{j_i}^{(i)} \ (i=2,\dots,\alpha)\}$ such that $A_{j_1}^{(1)} \supseteq A_{j_2}^{(2)} \supseteq \cdots \supseteq A_{j_\alpha}^{(\alpha)} \& A_{j_\alpha}^{(\alpha)} \neq \phi$, there is some $A_{j_1}^{(1)}$ such that $I(A_{j_1}^{(1)}) = \infty$. Next, for any $A_j^{(2)}$ contained in the above $A_{j_1}^{(1)}$ with $I(A_{j_1}^{(1)})$ $=\infty$, we put $I(A_{j_1}^{(1)}, A_j^{(2)}) = \sup \{ \alpha : {}^{\exists}A_{j_i}^{(i)} \ (i=3, \cdots, \alpha) \text{ such that } A_{j_1}^{(1)} \supseteq A_j^{(2)} \}$ $\supseteq A_{j_3}^{(3)} \supseteq \cdots \supseteq A_{j_\alpha}^{(\alpha)} \& A_{j_\alpha}^{(\alpha)} \neq \phi \}.$ We call $I(A_{j_1}^{(1)})$ and $I(A_{j_1}^{(1)}, A_j^{(2)})$ the characters of $A_{j_1}^{(1)}$ and $\{A_{j_1}^{(1)}, A_j^{(2)}\}$, respectively. Thus, if we continue the foregoing process, we have a sequence of sets $A_{j_1}^{(1)}, A_{j_2}^{(2)}, \dots, A_{j_i}^{(i)}, \dots$ such that the characters of $\{A_{j_1}^{(1)}, \dots, A_{j_i}^{(i)}\}\$ for each *i* is infinite. This means that there is a sequence of sets $A_{j_1}^{(1)} \supseteq A_{j_2}^{(2)} \supseteq \cdots \supseteq A_{j_i}^{(i)} \supseteq \cdots$ and $A_{j_i}^{(i)} \neq \phi$ for $i=1, 2, \cdots$. Let $\{v_i\}$ be a sequence of points that $v_i \in A_{j_i}^{(i)}$ for each *i*. Then, since K is R-compact, there is a subsequence $\{v_{n_i}\}$ from $\{v_i\}$ and a point v_0 in K such that $v_{n_i} \rightarrow v_0$ with respect to $\{U_{r_i}\}$. That is, there is a fundamental sequence $\{U_{r_i}\}$ $(U_{r_i} \in \{U_{r_i}\})$ such that $v_{n_i} \in v_0 + U_{r_i}$. Thus, for sufficiently large n_j , we have $v_i - v_0 = v_i - x_{ji}^{(i)} + x_{ji}^{(i)} - v_{n_j} + v_{n_j}$ $-v_0 \in U_{(i)}^{(j_i)} + U_{(i)}^{(j_i)} + U_{r_i}$. Then there is a fundamental sequence $\{U_{r_i}^*\}$ such that $U_{(i)}^{(j_i)} + U_{(i)}^{(j_i)} + U_{r_i} \subseteq U_{r_i}^*$. Thus we see

$$v_i - v_0 \in U_i^*$$
 for all i (1)

Now, for any positive integer n, we can make $T_{n+1}(D)$ into a pre-linear ranked space by defining $y + W_i$, where $W_i = T_{n+1}$ $(U_{r_i}^* \cap D)$, as a neighbourhood at $y \ (y \in T_{n+1}(D))$ with rank *i*, and $T_{n+1}(D)$ as the neighbourhood with rank zero. It is easily seen that the pre-linear ranked space $T_{n+1}(D)$ is T_2 -space. The relation $U_{(i)}^{(j_1)} \subseteq U_{r_i}^*$ implies that K is R-compact with respect to $\{U_{r_i}^*\}$. Thus $T_{n+1}(K)$ is *R*-compact with repect to $\{W_i\}$ by Lemma 3, and is *R*-closed. As $W_i = T_{n+1}(U_{\tau_i}^* \cap D) = [1/(n+1)]$ $(U_{r_i}^* \cap D + T(U_{r_i}^* \cap D) + \cdots + T^n(U_{r_i}^* \cap D))$, we see $[1/(n+1)](U_{r_i}^* \cap D) \subseteq W_i$. Hence, the relation (1) implies that $[1/(n+1)]v_i - [1/(n+1)]v_0 \in W_i$ for all *i*. As we have $v_i \in T_{n+1}(K)$ for sufficiently large *i*, then $[1/(n+1)v_0]$ $\in \overline{[1/(n+1)]T_{n+1}(K)}$, where $\overline{[1/(n+1)]T_{n+1}(K)}$ is *R*-closure in $T_{n+1}(D)$ with respect to $\{W_i\}$. Since it is easily verified that $\overline{[1/(n+1)]T_{n+1}(K)}$ $=[1/(n+1)]\overline{T_{n+1}(K)}$, we assert $v_0 \in T_{n+1}(K)$ for any *n*. It can be shown that K-K is a bounded set in E, that is, there is a fundamental sequence $\{V_{i}^*\}$ in E and some sequence of numbers $\{\lambda_i\}$ $(\lambda_i > 0)$ such that $K-K \subseteq \lambda_i V_{i_i}^*$ for all *i*. Finally, we shall prove that $T(v_0) = v_0$. Suppose it is not true, that is, $T(v_0) \neq v_0$. Since the space E is T_1 -space, there is some $V_{r_{i_0}}^*$ in the above sequence $\{V_{r_i}^*\}$ such that $T(v_0) - v_0 \in V_{r_{i_0}}^*$. However, the fact that ${T}_n(K) \ni v_0$ for each n implies that there is some $z_n \, (z_n \in K)$ such that $v_0 = T_n(z_n) = (1/n) \sum_{k=0}^{n-1} T^k(z_n)$. Thus we have $T(v_0) - v_0$ $= (1/n) \sum_{k=1}^{n} T^{k}(z_{n}) - (1/n) \sum_{k=0}^{n-1} T^{k}(z_{n}) = (1/n)(T^{n}(z_{n}) - z_{n}) \in (1/n)(K-K).$ Hence, we assert $(K-K) \subset nV^*_{\tau_{i_0}}$ for all n. This is a contradiction. This completes the proof.

Acknowledgment. I wish to thank very much Prof. Kinjirô Kunugi for his valuable discussions and suggestions.

References

- [1] K. Kunugi: Sur les espaces complets et régulièrement complets. I. Proc. Japan Acad., 30, 553-556 (1954).
- [2] ——: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42, 318-322, 549-554 (1966).
- [3] M. Washihara: On ranked spaces and linearity. II. Proc. Japan Acad., 45, 238-242 (1969).
- [4] Y. Nagakura: On closed graph theorem. Proc. Japan Acad., 48, 665-668 (1972).
- [5] —: On Banach-Steinhaus theorem. Proc. Japan Acad., 49, 333-336 (1973).
- [6] ——: The theory of nuclear spaces treated by the method of ranked space.
 I, II, III, IV. Proc. Japan Acad., 47, 337-341, 342-345, 870-874, 875-879 (1971).
- [7] ——: The theory of nuclear spaces treated by the method of ranked space.
 V, VI, VII. Proc. Japan Acad., 48, 110-115, 221-226, 394-397 (1972).