46. A Remark on Almost-Continuous Mappings

By Takashi Noiri

Miyakonojo Technical College

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1974)

1. Introduction. In 1968, M. K. Singal and A. R. Singal [2] defined almost-continuous mappings as a generalization of continuous mappings. They obtained an extensive list of theorems about such a mapping, among them, the following two results were established:

Theorem A. Let $f_{\alpha}: X_{\alpha} \to X_{\alpha}^{*}$ be almost-continuous for each $\alpha \in I$ and let $f: \prod X_{\alpha} \to \prod X_{\alpha}^{*}$ be defined by setting $f((x_{\alpha})) = (f_{\alpha}(x_{\alpha}))$ for each point $(x_{\alpha}) \in \prod X_{\alpha}$. Then f is almost-continuous.

Theorem B. Let $h: X \to \Pi X_{\alpha}$ be almost-continuous. For each $\alpha \in I$, define $f_{\alpha}: X \to X_{\alpha}$ by setting $f_{\alpha}(x) = (h(x))_{\alpha}$. Then f_{α} is almost-continuous for all $\alpha \in I$.

The purpose of the present note is to show that the converses of the above two theorems are also true. As the present author has a question in the proof of Theorem B, we shall give the another proof.

2. Definitions and notations. Let A be a subset of a topological space X. By Cl A and Int A we shall denote the closure of A and the interior of A in X respectively. Moreover, A is said to be regularly open if A = Int Cl A, and regularly closed if A = Cl Int A. By a space we shall mean a topological space on which any separation axiom is not assumed. A mapping f of a space X into a space Y is said to be *almost-continuous* (simply *a.c.*) if for each point $x \in X$ and any neighborhood V of f(x) in Y, there exists a neighborhood U of x such that $f(U) \subset \text{Int Cl } V$. It is a characterization of *a.c.* mappings that the inverse image of every regularly open (resp. regularly closed) set is open (resp. closed) [2, Theorem 2.2]. A mapping is said to be *almost-open* if the image of every regularly open set is open.

3. Preliminaries. We begin by the following lemma.

Lemma 1. If a mapping $f: X \to Y$ is a.c. and almost-open, then the inverse image $f^{-1}(V)$ of each regularly open set V of Y is a regularly open set of X.

Proof. Let V be an arbitrary regularly open set of Y. Then, since f is a.c., $f^{-1}(V)$ is open and hence we obtain that $f^{-1}(V) \subset \text{Int Cl}$ $f^{-1}(V)$. In order to prove that $f^{-1}(V)$ is regularly open, it is sufficient to show that $f^{-1}(V) \supset \text{Int Cl} f^{-1}(V)$. Since f is a.c. and Cl V is regularly closed, $f^{-1}(\text{Cl } V)$ is closed and hence we have Int Cl $f^{-1}(V)$ $\subset \text{Cl } f^{-1}(V) \subset f^{-1}(\text{Cl } V)$. Since f is almost-open and Int Cl $f^{-1}(V)$ is regularly open, $f[\operatorname{Int} \operatorname{Cl} f^{-1}(V)]$ is open and hence we have $f[\operatorname{Int} \operatorname{Cl} f^{-1}(V)] \subset \operatorname{Int} \operatorname{Cl} V = V$. Therefore, we obtain that $f^{-1}(V) \supset \operatorname{Int} \operatorname{Cl} f^{-1}(V)$. Hence $f^{-1}(V)$ is a regularly open set in X.

T. Noiri

Remark. The composition of a.c. mappings is not always a.c., as the following counter-example shows.

Example. Let X be the set of all real numbers and $\Gamma_x = \{X, \phi\}$ $\cup \{A \subset X | X - A: \text{ countable}\}$. We put $Y = \{a, b\}$, $\Gamma_y = \{Y, \{a\}, \phi\}$, $Z = \{a, b, c\}$ and $\Gamma_z = \{Z, \{a, c\}, \{a\}, \{c\}, \phi\}$. Consider a mapping $f: (X, \Gamma_x)$ $\rightarrow (Y, \Gamma_y)$ defined as follows: f(x) = a if x is rational; f(x) = b if x is irrational and a mapping $g: (Y, \Gamma_y) \rightarrow (Z, \Gamma_z)$ defined as follows: g(a) = a and g(b) = b. Then f is a.c. [2, Example 2.1]. Moreover, it is easy to check that g is continuous and hence a.c. But, by Example 2.3 of [2], $g \circ f$ is not a.c.

The above example shows that the composition of an a.c. mapping and a continuous mapping is not always a.c. While, we have the following lemma.

Lemma 2. Let X, Y and Z be three spaces. If a mapping $f: X \to Y$ is a.c. and a mapping $g: Y \to Z$ is almost-open and a.c., then $g \circ f: X \to Z$ is a.c.

Proof. Let W be an arbitrary regularly open set of Z. Then by Lemma 1 $g^{-1}(W)$ is regularly open in Y because g is almost-open and a.c. Since f is a.c., $f^{-1}[g^{-1}(W)] = (g \circ f)^{-1}(W)$ is open in X. Hence $g \circ f$ is a.c.

4. Almost-continuous mappings and product spaces. Let $\{X_{\alpha} | \alpha \in I\}$ and $\{Y_{\alpha} | \alpha \in I\}$ be two families of spaces with the same set I of indices. We shall simply denote the product spaces $\Pi\{X_{\alpha} | \alpha \in I\}$ and $\Pi\{Y_{\alpha} | \alpha \in I\}$ by ΠX_{α} and ΠY_{α} respectively.

Theorem 1. Let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a mapping for each $\alpha \in I$ and $f: \Pi X_{\alpha} \to \Pi Y_{\alpha}$ a mapping defined by $f((x_{\alpha})) = (f_{\alpha}(x_{\alpha}))$ for each point (x_{α}) in ΠX_{α} . Then, f is a.c. if and only if f_{α} is a.c. for each $\alpha \in I$.

Proof. For the sufficiency, see Theorem 2.10 of [2]. We shall prove the necessity. For each $\alpha \in I$, let $p_{\alpha}: \Pi X_{\beta} \to X_{\alpha}$ and $q_{\alpha}: \Pi Y_{\beta} \to Y_{\alpha}$ be the projections. Then, by the definition of f, we have $q_{\alpha} \circ f = f_{\alpha} \circ p_{\alpha}$ for each $\alpha \in I$. Since q_{α} is continuous open and f is *a.c.*, by Lemma 2, $q_{\alpha} \circ f$ is *a.c.* In order to prove that f_{α} is *a.c.*, we suppose that V_{α} is an arbitrary regularly open set in Y_{α} . Then $(f_{\alpha} \circ p_{\alpha})^{-1}(V_{\alpha}) = (q_{\alpha} \circ f)^{-1}(V_{\alpha})$ is open in ΠX_{β} . Since p_{α} is open and surjective, $p_{\alpha}[(f_{\alpha} \circ p_{\alpha})^{-1}(V_{\alpha})] = f_{\alpha}^{-1}(V_{\alpha})$ is open in X_{α} . Hence f_{α} is *a.c.* for each $\alpha \in I$.

Theorem 2. A mapping $h: X \to \Pi X_{\beta}$ is a.c. if and only if $p_{\alpha} \circ h$ is a.c. for each $\alpha \in I$, where p_{α} is the projection of ΠX_{β} onto X_{α} .

Proof. Necessity. Suppose that h is a.c. Then, by Lemma 2, $p_{\alpha} \circ h$ is a.c. for each $\alpha \in I$ because p_{α} is open and continuous.

Sufficiency. Suppose that $p_{\alpha} \circ h$ is a.c. for each $\alpha \in I$. Let x be any point in X and V any neighborhood of h(x) in ΠX_{α} . Then there exists an open set ΠV_{α} in ΠX_{α} such that $h(x) \in \Pi V_{\alpha} \subset V$, $V_{\alpha} = X_{\alpha}$ for all $\alpha \in I$ except a finite number of indices, say, $\alpha_1, \alpha_2, \dots, \alpha_n$, and V_{α_i} is an open set in X_{α_i} , where $i=1,2,\dots,n$. Since $p_{\alpha} \circ h$ is a.c. for each $\alpha \in I$, for each *i* there is a neighborhood U_{α_i} of x such that $(p_{\alpha_i} \circ h)(U_{\alpha_i})$ \subset Int Cl V_{α_i} . Since we have $h(\bigcap_{i=1}^n U_{\alpha_i}) \subset \bigcap_{i=1}^n p_{\alpha_i}^{-1}[(p_{\alpha_i} \circ h)(U_{\alpha_i})]$ $\subset \bigcap_{i=1}^n p_{\alpha_i}^{-1}[$ Int Cl $V_{\alpha_i}]$, by Lemma 2 of [1], we obtain that $h(\bigcap_{i=1}^n U_{\alpha_i})$ \subset Int Cl $\Pi V_{\alpha} \subset$ Int Cl V. Being $\bigcap_{i=1}^n U_{\alpha_i}$ a neighborhood of x, h is a.c.

References

- H. Kawashima: On the topological product of minimal Hausdorff spaces. TRU Math., 1, 62-64 (1965).
- [2] M. K. Singal and A. R. Singal: Almost-continuous mappings. Yokohama Math. J., 16, 63-73 (1968).

207