44. On a Parametrix in Some Weak Sense of a First Order Linear Partial Differential Operator with Two Independent Variables

By Toyohiro Akamatsu
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1974)

Introduction. Let $L=\partial / \partial t+i \phi(x) \sigma(t) \partial / \partial x$ be a first order linear partial differential operator with two independent variables in an open rectangle $\Omega=(a, b) \times(\alpha, \beta) \subset R_{x}^{1} \times R_{t}^{1},-\infty \leqq a<b \leqq+\infty,-\infty \leqq \alpha<0<\beta$ $\leqq+\infty$. In this paper we construct a parametrix of L in some weak sense and consider the regularity of the solution of the equation, (0.1) $L u=f \quad$ in Ω, under the assumptions that
(0.2) $\quad \phi \in C^{\infty}((a, b))$, and all derivatives of ϕ are bounded, $\sigma \in C^{\infty}((\alpha, \beta)), \sigma(t) \geqq 0$ in (α, β), and zeros of σ are all of finite order.
Equation (0.1) is locally solvable in Ω under these assumptions (cf. [1], [4]), but is not hypoelliptic in general (cf. [6]). In §4 it will be seen how the regularity, with respect to t, of the solution u of (0.1) increases.
§ 1. Outline of the construction of a parametrix. We consider the solution of the form

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \pi i} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right) v(x, \xi) d \xi \tag{1.1}
\end{equation*}
$$

Calculating formally, we have

$$
\begin{equation*}
L u=\frac{\sigma(t)}{2 \pi} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right)(\xi v(x, \xi)+\phi(x) \partial / \partial x v(x, \xi)) d \xi . \tag{1.2}
\end{equation*}
$$

Remark that if $\sigma(t)>0$ in (α, β)

$$
\begin{equation*}
g(t)=\frac{\sigma(t)}{2 \pi} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right)\left(\int \exp \left(-i \xi \int_{0}^{t^{\prime}} \sigma(s) d s\right) g\left(t^{\prime}\right) d t^{\prime}\right) d \xi \tag{1.3}
\end{equation*}
$$

for every $g \in C_{0}^{\infty}((\alpha, \beta))$. Then, we can expect that when the solution v of the equation

$$
\begin{equation*}
\xi v(x, \xi)+\phi(x) \partial / \partial x v(x, \xi)=\int \exp \left(-i \xi \int_{0}^{t^{\prime}} \sigma(s) d s\right) f\left(x, t^{\prime}\right) d t^{\prime} \tag{1.4}
\end{equation*}
$$

is substituted in the right-hand side of (1.1) $u(x, t)$ will give a solution of (0.1).
§ 2. Preliminary lemmas. We state two lemmas for the construction of a parametrix of L without proof.

Lemma 2.1. Let ϕ satisfy (0.2). We consider the equation

$$
\begin{equation*}
\xi v(x)+\phi(x) d / d x v(x)=f(x) \quad \text { in }(a, b) \tag{2.1}
\end{equation*}
$$

with ξ a real parameter. Then, for every positive integer j, there exists a constant $C_{j}>0$, such that for $|\xi|>C_{j}$ we can find a linear mapping $S_{\xi}: C_{0}^{j+1}((a, b)) \rightarrow C^{j}((a, b))$ having the following properties:

$$
\begin{gather*}
\xi S_{\xi} f+\phi d / d x S_{\xi} f=f \quad \text { in }(a, b), \tag{2.2}\\
\phi d / d x S_{\xi} f=S_{\xi}(\phi d / d x f), \tag{2.3}
\end{gather*}
$$

When $S_{\xi} f$ is considered as a function of $(x, \xi), \partial^{p} / \partial x^{p} S_{\xi} f$ is in-
(2.4) finitely differentiable with respect to ξ in $|\xi|>C_{j}$ for $0 \leqq p \leqq j$, and continuous in $(a, b) \times\left\{\xi \| \xi \mid>C_{j}\right\}$.
Furthermore, the following two inequalities hold with a constant C independent of f, for every non negative integer N :
(2.4.1) $\left|\partial^{N} / \partial \xi^{N} \partial^{p} / \partial x^{p} S_{\xi} f(x)\right| \leqq C(1+|\xi|)^{-N-1} \sup _{a<x<b} \sum_{0 \leq l \leqq p}\left|\partial^{l} / \partial x^{l} f(x)\right|$

$$
\begin{equation*}
\int_{a}^{b}\left|\partial^{N} / \partial \xi^{N} \partial^{p} / \partial x^{p} S_{\xi} f(x)\right|^{2} d x \leqq C(1+|\xi|)^{-2 N-2} \int_{a}^{b} \sum_{0 \leq l \leqq p}\left|d^{l} / d x^{l} f(x)\right|^{2} d x \tag{2.4.2}
\end{equation*}
$$ for $f \in C_{0}^{j+1}((a, b)),|\xi|>C_{j}$, and $0 \leqq p \leqq j$.

Proof is omitted, but we give the explicit expression of $S_{\xi} f$.
Set $M=\{x \in(a, b) \mid \phi(x)=0\}$ and decompose $(a, b) \backslash M$ into a disjoint union of open intervals $\left(a_{\mu}, b_{\mu}\right)_{\mu \in \Lambda}$. We define $S_{\xi} f$ in the form,

$$
S_{\xi} f(x)=\left\{\begin{array}{lc}
\frac{1}{\xi} f(x) & (x \in M) \tag{2.5}\\
\int_{a_{\mu}}^{x} k(x, y, \xi) \frac{1}{\phi(y)} f(y) d y & \left(\phi, \xi \text { have the same sign, } x \in I_{\mu}\right) \\
-\int_{x}^{b_{\mu}} k(x, y, \xi) \frac{1}{\phi(y)} f(y) d y & \text { (otherwise) }
\end{array}\right.
$$

where $k(x, y, \xi)=\exp \left(\xi \int_{x}^{y} \frac{1}{\phi(s)} d s\right)$, and $I_{\mu}=\left(a_{\mu}, b_{\mu}\right)$.
Now we introduce some notations. For every $f \in L^{1}((\alpha, \beta))$ we define $T f(\xi)$ as follows.

$$
\begin{equation*}
T f(\xi)=\int_{\alpha}^{\beta} \exp \left(-i \xi \int_{0}^{t} \sigma(s) d s\right) f(t) d t \tag{2.6}
\end{equation*}
$$

For $\tilde{f} \in L^{1}\left(R_{\xi}^{1}\right)$ we define

$$
\begin{equation*}
\tilde{T} \tilde{f}(t)=\int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right) \tilde{f}(\xi) d \xi \quad \alpha<t<\beta \tag{2.7}
\end{equation*}
$$

Lemma 2.2. i) Let K be any compact subset of (α, β). For $\delta>0$, we have with a constant C depending only on K and δ

$$
\begin{equation*}
|T f(\xi)|^{2} \leqq C(1+|\xi|)^{2 \delta} \int\left|\Lambda^{-\delta} f(t)\right|^{2} d t \tag{2.8}
\end{equation*}
$$

where $f \in C_{0, K}^{\infty}((\alpha, \beta))=\left\{g \in C_{0}^{\infty}((\alpha, \beta)) \mid \operatorname{supp} g \subset K\right\},|\xi|>1$, and $\Lambda^{-\delta}$ is the pseudo-differential operator with symbol $\left(1+|\xi|^{2}\right)^{-\delta / 2}$.
ii) Denoting by l_{K} the maximum of the orders of zeros of σ in K, we have with a constant C depending only on K

$$
\begin{align*}
|T f(\xi)| \leqq C(1+|\xi|)^{-1 /\left(l l_{K}+1\right)} & \sup \left(|f(t)|+\left|f^{\prime}(t)\right|\right) \tag{2.9}\\
& \text { for } f \in C_{0, K}^{\infty}((\alpha, \beta)) \text {, and }|\xi|>1 .
\end{align*}
$$

iii) With the same K, l_{K}, and C as in ii) we have

$$
\begin{equation*}
\int_{K}|\tilde{T} \tilde{f}(t)|^{2} d t \leqq C \int|\tilde{f}(\xi)|^{2}(1+|\xi|)^{l_{\tilde{L}} /\left(l_{K}+1\right)} d \xi \quad \tilde{f} \in L^{1}\left(R_{\xi}^{1}\right),|\xi|>1 . \tag{2.10}
\end{equation*}
$$

§ 3. Construction of a parametrix. We introduce some notations $H_{r, s}=\left\{\left.f \in \mathcal{S}^{\prime}\left(R_{x}^{1} \times R_{t}^{1}\right)\left|\|f\|_{r, s}^{2}=\iint\left(1+|\xi|^{2}\right)^{r}\left(1+|\tau|^{2}\right)^{s}\right| f(\xi, \tau)\right|^{2} d \xi d \tau<+\infty\right\}$, $H_{r, s}^{\mathrm{loc}}(\Omega)=\left\{f \in \mathscr{D}^{\prime}(\Omega) \mid \omega f \in H_{r, s}\right.$ for every $\left.\omega \in C_{0}^{\infty}(\Omega)\right\}$, $H_{r, s}^{0}(\Omega)=\mathcal{E}^{\prime}(\Omega) \cap H_{r, s}$, $H_{r, s, K}^{0}(\Omega)=\left\{f \in H_{r, s}^{0}(\Omega) \mid t\right.$-projection of supp $\left.f \subset K \subset(\alpha, \beta)\right\}$ where r, s are any real numbers.

Theorem 3.1. Let L and Ω be as in $\S 0$, and assume that (0.2) and (0.3) hold. Then, for every positive integer j, there exist linear mappings E_{j}, R_{j}, and R_{j}^{\prime}

$$
\left.\begin{array}{ll}
(3.1) & E_{j}: H_{0,0}^{0}(\Omega) \rightarrow H_{0,0}^{\mathrm{loo}}(\Omega) \tag{3.1}\\
(3.2) & R_{j}: H_{r, s}^{0}(\Omega) \rightarrow H_{r, 5}^{10 o}(\Omega) \\
(3.3) & R_{j}^{\prime}: H_{r, s}^{0}(\Omega) \rightarrow H_{r, \tilde{s}}^{10 c}(\Omega)
\end{array}\right\} \text { for any real numbers } r, s, \tilde{s}
$$

having the following properties:

$$
\begin{equation*}
L E_{j} f=f+R_{j} f \quad \text { in } \Omega \quad f \in H_{0,0}^{0}(\Omega) \tag{3.4}
\end{equation*}
$$

(3.5) $\quad E_{j} L f=f+R_{j}^{\prime} f \quad$ in $\Omega \quad$ for $f \in H_{0,0}^{0}(\Omega)$ such that $L f \in H_{0,0}^{0}(\Omega)$.
$\left\{\begin{array}{l}\text { Take any } \omega \in C_{0}^{\infty}(\Omega) \text { and denote by } l_{\omega} \text { the maximum of the orders } \\ \text { of zeros of } \sigma \text { in the } t \text {-projection of supp } \omega \text {. For } 0<\delta<\frac{1}{2}\left(1+l_{\omega}\right)^{-1}, \\ \text { and any compact set } K \text { in }(\alpha, \beta) \text { we have, with a constant } C \text { in- } \\ \text { dependent of } f \\ \quad\left\|\omega \partial^{p} / \partial x^{p} E_{j} f\right\|_{0,0} \leqq C\|f\|_{p,-\delta} \quad f \in H_{0,0, K}^{0}(\Omega), \quad 0 \leqq p \leqq j .\end{array}\right.$

Let K and ω be as in (3.6), then we have with a constant C independent of f

$$
\left.\begin{array}{l}
\left.\left\|\omega R_{j} f\right\|_{r, s} \leqq C\|f\|_{r, s}\right\} f \in H_{r, s, K}^{0}(\Omega) . \\
\left\|\omega R_{j}^{\prime} f\right\|_{r, s} \leqq C\|f\|_{r, s}
\end{array}\right\}
$$

Proof. We define E_{j}, R_{j}, and R_{j}^{\prime} only for $f \in C_{0}^{\infty}(\Omega)$. The extension to the general f can be performed using the approximation by mollifier. Choose a function $\chi_{j}(\xi) \in C^{\infty}\left(R_{\xi}^{1}\right)$ such that $\chi_{j}(\xi)=0$ $\left(|\xi| \leqq 2 C_{j}+1\right)$, and $\chi_{j}(\xi)=1\left(|\xi| \geqq 3 C_{j}+1\right)$, where C_{j} is the constant appearing in Lemma 2.1. From now on in this proof we drop the subscript j. Now define the operators U and E by the formula

$$
\begin{gather*}
U f(x, \xi)=\chi(\xi) S_{\xi}\left(\int \exp \left(-i \xi \int_{0}^{t^{\prime}} \sigma(s) d s\right) f\left(\cdot, t^{\prime}\right) d t^{\prime}\right)(x) \tag{3.8}\\
E f(x, t)=\frac{1}{2 \pi i} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right) U f(x, \xi) d \xi \tag{3.9}
\end{gather*}
$$

where $f \in C_{0}^{\infty}(\Omega)$.
From Lemma 2.1 (2.4.1) and Lemma 2.2 (2.9) we see that (3.9) is well defined, and $E f$ is continuously differentiable with respect to x up to the order j. Furthermore we can write

$$
\begin{equation*}
\partial^{p} / \partial x^{p} E f(x, t)=\frac{1}{2 \pi i} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right) \partial^{p} / \partial x^{p} U f(x, \xi) d \xi \tag{3.10}
\end{equation*}
$$

$$
(0 \leqq p \leqq j)
$$

Applying Lemma 2.2 (2.10), Lemma 2.1 (2.4.2), and Lemma 2.2 (2.8) successively to (3.10), we obtain (3.6) for $f \in C_{0}^{\infty}(\Omega)$. On the other hand, when f vanishes near zeros of $\sigma, E f$ is continuously differentiable with respect to t also, and we can write using Lemma 2.1 (2.2) and Fourier inversion formula

$$
\begin{align*}
& L E f(x, t)=f(x, t) \\
& \quad+\frac{\sigma(t)}{2 \pi} \iint \exp \left(i \xi \int_{t^{\prime}}^{t} \sigma(s) d s\right)(\chi(\xi)-1) f\left(x, t^{\prime}\right) d t^{\prime} d \xi \tag{3.11}
\end{align*}
$$

For a general $f \in C_{0}^{\infty}(\Omega)$, approximating it in L^{2}-norm by functions as above with supports contained in a common compact set in Ω, we see that (3.11) also holds for it. Now define R and R^{\prime} as follows:

$$
\begin{align*}
& R f(x, t)=\frac{\sigma(t)}{2 \pi} \iint \exp \left(i \xi \int_{t^{\prime}}^{t} \sigma(s) d s\right)(\chi(\xi)-1) f\left(x, t^{\prime}\right) d t^{\prime} d \xi \tag{3.12}\\
& R^{\prime} f(x, t)=\frac{1}{2 \pi} \iint \exp \left(i \xi \int_{t^{\prime}}^{t} \sigma(s) d s\right)(\chi(\xi)-1) f\left(x, t^{\prime}\right) \sigma\left(t^{\prime}\right) d t^{\prime} d \xi
\end{align*}
$$

Then, (3.4) holds for $f \in C_{0}^{\infty}(\Omega)$. (3.5) can be proved in a similar way. Finally, inequalities in (3.7) follow easily from definitions (3.12) and (3.13).
Q.E.D.
§ 4. L^{2}-estimate. Lemma 4.1. Let E_{j} be the parametrix constructed in Theorem 3.1. If $f \in H_{0,0}^{0}(\Omega)$ and $(\phi \partial / \partial x)_{P} f \in H_{0,0}^{0}(\Omega)(0 \leqq p \leqq j)$ we can write

$$
\begin{align*}
\partial^{p} / \partial t^{p} E_{j} f= & \sum_{1 \leqq k \leqq p} \sigma_{p, k}(t) E_{j}\left((\phi \partial / \partial x)^{k} f\right) \tag{4.1}\\
& +\sum_{0 \leq l+m \leqq p-1} \sigma_{p, l, m}(t) \partial^{l} / \partial t^{l}(\phi \partial / \partial x)^{m}\left(f+R_{j} f\right)
\end{align*}
$$

where $\sigma_{p, k}, \sigma_{p, l, m} \in C^{\infty}((\alpha, \beta))$ are appropriate functions independent of f.
Proof. This can be proved by induction on p using Lemma 2.1 (2.3) and Theorem 3.1 (3.4).
Q.E.D.

Lemma 4.2. Let E_{j} be as in the above lemma. Choose any functions $\omega, \tilde{\omega} \in C_{0}^{\infty}(\Omega)$ such that $\tilde{\omega}=0$ near $\operatorname{supp} \omega$, and fix any integer p such that $0 \leqq p \leqq j$. Then, $\omega E_{j}(\tilde{\omega} f) \in H_{p, q}$ for any positive integer q if $f \in H_{p, 0}^{\mathrm{loc}}(\Omega)$, and we have with a constant C independent of f
(4.2) $\quad\left\|\omega E_{j}(\tilde{\omega} f)\right\|_{p, 4} \leqq\|\tilde{\omega} f\|_{p, 0} \quad f \in H_{p, 0}^{\mathrm{loc}}(\Omega)$.

Proof is omitted.
Theorem 4.3. Let I, J be non negative integers. Assume that $u,(\phi \partial / \partial x)^{k}(L u)$, and $\partial^{l} / \partial t^{l}(\phi \partial / \partial x)^{m}(L u) \in H_{I, 0}^{1 \mathrm{oc}}(\Omega)$ for $0 \leqq k \leqq J$ and $0 \leqq l$ $+m \leqq J-1$, then $u \in H_{I, J}^{\mathrm{loc}}(\Omega)$. Take any two functions $\omega, \tilde{\omega} \in C_{0}^{\infty}(\Omega)$ such that $\tilde{\omega}=1$ near $\operatorname{supp} \omega$, and let l_{ω} be the number defined in Theorem 3.1 (3.6), then, for every positive integer N and $0<\delta<\frac{1}{2}\left(l_{w}+1\right)^{-1}$, we have with a constant C independent of u

$$
\begin{align*}
& \|\omega u\|_{I, J} \leqq C\left(\sum_{0 \leqq k \leqq J}\left\|(\phi \partial / \partial x)^{k}(\tilde{\omega} f)\right\|_{I,-\delta}+\sum_{0 \leqq l+m \leqq J-1}\left\|(\phi \partial / \partial x)^{m}(\tilde{\omega} f)\right\|_{I, l}\right. \tag{4.3}\\
& \left.\quad+\|(L \tilde{\omega}) u\|_{I, 0}+\|\tilde{\omega} u\|_{I,-N}\right)
\end{align*}
$$

where $f=L u$.
Proof. Using Theorem 3.1 (3.5) with $j=I$, we can write
(4.4) $\quad \omega u=\omega E_{I}(\tilde{\omega} f)+\omega E_{I}((L \tilde{\omega}) u)-\omega R_{I}^{\prime}(\tilde{\omega} u)$.

Hence (4.3) follows from Theorem 3.1 (3.6), (3.7) and Lemmas 4.1, 4.2.
Q.E.D.

References

[1] R. Beals and C. Fefferman: On the solvability of linear partial differential equations with C^{∞} coefficients (to appear).
[2] L. Nirenberg and F. Treves: Solvability of a first order linear partial differential equation. Comm. Pure Applied Math., 16, 331-351 (1963).
[3] --: On local solvability of linear partial differential equations, Part I. Necessary conditions. Comm. Pure Applied Math., 23, 1-38 (1970).
[4] -: On local solvability of linear partial differential equations, Part II. Sufficient conditions. Comm. Pure Applied Math., 23, 459-510 (1970).
[5] F. Treves: A new method of proof of the subelliptic estimates. Comm. Pure Applied Math., 24, 71-115 (1971).
[6] -: Hypoelliptic partial differential equations of principal type. Sufficient conditions and necessary conditions. Comm. Pure Applied Math., 24, 631670 (1971).

