44. On a Parametrix in Some Weak Sense of a First Order Linear Partial Differential Operator with Two Independent Variables

By Toyohiro Akamatsu

Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1974)

Introduction. Let $L=\partial/\partial t+i\phi(x)\sigma(t)\partial/\partial x$ be a first order linear partial differential operator with two independent variables in an open rectangle $\Omega = (a, b) \times (\alpha, \beta) \subset R_x^1 \times R_t^1$, $-\infty \leq a < b \leq +\infty$, $-\infty \leq \alpha < 0 < \beta$ $\leq +\infty$. In this paper we construct a parametrix of L in some weak sense and consider the regularity of the solution of the equation, (0.1) Lu = f in Ω , under the assumptions that

under the assumptions that

(0.2) $\phi \in C^{\infty}((a, b))$, and all derivatives of ϕ are bounded,

(0.3) $\sigma \in C^{\infty}((\alpha, \beta)), \ \sigma(t) \ge 0$ in (α, β) , and zeros of σ are all of finite order.

Equation (0.1) is locally solvable in Ω under these assumptions (cf. [1], [4]), but is not hypoelliptic in general (cf. [6]). In § 4 it will be seen how the regularity, with respect to t, of the solution u of (0.1) increases.

§ 1. Outline of the construction of a parametrix. We consider the solution of the form

(1.1)
$$u(x,t) = \frac{1}{2\pi i} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) v(x,\xi)d\xi.$$

Calculating formally, we have

(1.2)
$$Lu = \frac{\sigma(t)}{2\pi} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) (\xi v(x,\xi) + \phi(x)\partial/\partial x v(x,\xi)) d\xi.$$

Remark that if $\sigma(t) > 0$ in (α, β)

(1.3)
$$g(t) = \frac{\sigma(t)}{2\pi} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) \left(\int \exp\left(-i\xi \int_0^{t'} \sigma(s)ds\right) g(t')dt'\right) d\xi$$

for every $g \in C_0^{\infty}((\alpha, \beta))$. Then, we can expect that when the solution v of the equation

(1.4)
$$\xi v(x,\xi) + \phi(x)\partial/\partial xv(x,\xi) = \int \exp\left(-i\xi \int_0^{t'} \sigma(s)ds\right) f(x,t')dt'$$

is substituted in the right-hand side of (1.1) u(x, t) will give a solution of (0.1).

§ 2. Preliminary lemmas. We state two lemmas for the construction of a parametrix of L without proof.

Lemma 2.1. Let ϕ satisfy (0.2). We consider the equation

(2.1) $\xi v(x) + \phi(x)d/dxv(x) = f(x)$ in (a, b) with ξ a real parameter. Then, for every positive integer j, there exists a constant $C_j > 0$, such that for $|\xi| > C_j$ we can find a linear mapping $S_{\xi}: C_{0}^{j+1}((a, b)) \rightarrow C^{j}((a, b))$ having the following properties:

- (2.2) $\xi S_{\varepsilon} f + \phi d/dx S_{\varepsilon} f = f \qquad in \ (a, b),$
- (2.3) $\phi d/dx S_{\xi} f = S_{\xi} (\phi d/dx f),$

(2.4) When $S_{\xi}f$ is considered as a function of (x,ξ) , $\partial^{p}/\partial x^{p}S_{\xi}f$ is infinitely differentiable with respect to ξ in $|\xi| > C_{j}$ for $0 \le p \le j$, and continuous in $(a, b) \times \{\xi | |\xi| > C_{j}\}$.

Furthermore, the following two inequalities hold with a constant C independent of f, for every non negative integer N:

$$(2.4.1) \quad |\partial^{N}/\partial\xi^{N}\partial^{p}/\partial x^{p}S_{\xi}f(x)| \leq C(1+|\xi|)^{-N-1} \sup_{a < x < b} \sum_{0 \leq l \leq p} |\partial^{l}/\partial x^{l}f(x)|$$

$$(2.4.2) \quad \int_{a}^{b} |\partial^{N}/\partial\xi^{N}\partial^{p}/\partial x^{p}S_{\xi}f(x)|^{2}dx \leq C(1+|\xi|)^{-2N-2} \int_{a}^{b} \sum_{0 \leq l \leq p} |d^{l}/dx^{l}f(x)|^{2}dx$$
for $f \in C_{b}^{i+1}((a, b)), |\xi| > C_{i}, and 0 \leq p \leq j.$

Proof is omitted, but we give the explicit expression of $S_{\varepsilon}f$. Set $M = \{x \in (a, b) | \phi(x) = 0\}$ and decompose $(a, b) \setminus M$ into a disjoint union of open intervals $(a_{\mu}, b_{\mu})_{\mu \in A}$. We define $S_{\varepsilon}f$ in the form,

(2.5)
$$S_{\xi}f(x) = \begin{cases} \frac{1}{\xi}f(x) & (x \in M) \\ \int_{a_{\mu}}^{x} k(x, y, \xi) \frac{1}{\phi(y)} f(y) dy & (\phi, \xi \text{ have the same sign, } x \in I_{\mu}) \\ -\int_{x}^{b_{\mu}} k(x, y, \xi) \frac{1}{\phi(y)} f(y) dy & (\text{otherwise}) \end{cases}$$

where $k(x, y, \xi) = \exp\left(\xi \int_x^y \frac{1}{\phi(s)} ds\right)$, and $I_{\mu} = (a_{\mu}, b_{\mu})$.

Now we introduce some notations. For every $f \in L^1((\alpha, \beta))$ we define $Tf(\xi)$ as follows.

(2.6)
$$Tf(\xi) = \int_{\alpha}^{\beta} \exp\left(-i\xi \int_{0}^{t} \sigma(s)ds\right) f(t)dt.$$

For $\tilde{f} \in L^1(R^1_{\varepsilon})$ we define

(2.7)
$$\widetilde{T}\widetilde{f}(t) = \int \exp\left(i\xi \int_{0}^{t} \sigma(s)ds\right)\widetilde{f}(\xi)d\xi \quad \alpha < t < \beta.$$

Lemma 2.2. i) Let K be any compact subset of (α, β) . For $\delta > 0$, we have with a constant C depending only on K and δ

(2.8)
$$|Tf(\xi)|^2 \leq C(1+|\xi|)^{2\delta} \int |\Lambda^{-\delta}f(t)|^2 dt$$

where $f \in C_{0,K}^{\infty}((\alpha, \beta)) = \{g \in C_0^{\infty}((\alpha, \beta)) | \text{supp } g \subset K\}, |\xi| > 1, \text{ and } \Lambda^{-\delta} \text{ is the pseudo-differential operator with symbol } (1+|\xi|^2)^{-\delta/2}.$

ii) Denoting by l_{κ} the maximum of the orders of zeros of σ in K, we have with a constant C depending only on K

(2.9)
$$|Tf(\xi)| \leq C(1+|\xi|)^{-1/(l_{K}+1)} \sup_{for \ f \in C_{0,K}^{\infty}((\alpha,\beta)), and |\xi| > 1.$$

T. AKAMATSU

iii) With the same K, l_{κ} , and C as in ii) we have (2.10) $\int_{\kappa} |\tilde{T}\tilde{f}(t)|^2 dt \leq C \int |\tilde{f}(\xi)|^2 (1+|\xi|)^{l_{\kappa}/(l_{\kappa}+1)} d\xi \qquad \tilde{f} \in L^1(R^1_{\xi}), |\xi| > 1.$

§ 3. Construction of a parametrix. We introduce some notations $H_{r,s} = \left\{ f \in \mathcal{S}'(R_x^1 \times R_t^1) | \|f\|_{r,s}^2 = \iint (1+|\xi|^2)^r (1+|\tau|^2)^s |f(\xi,\tau)|^2 d\xi d\tau < +\infty \right\},$ $H_{r,s}^{\text{loc}}(\Omega) = \{ f \in \mathcal{D}'(\Omega) | \omega f \in H_{r,s} \text{ for every } \omega \in C_0^{\infty}(\Omega) \},$ $H_{r,s}^0(\Omega) = \mathcal{E}'(\Omega) \cap H_{r,s},$ $H_{r,s}^0(\Omega) = \{ f \in H_{r,s}^0(\Omega) | f \in H_{r,s} \text{ for every } \delta \in C_0^{\infty}(\Omega) \},$

 $H^0_{r,s,K}(\Omega) = \{ f \in H^0_{r,s}(\Omega) | t$ -projection of supp $f \subset K \subset (\alpha, \beta) \}$ where r, s are any real numbers.

Theorem 3.1. Let L and Ω be as in §0, and assume that (0.2) and (0.3) hold. Then, for every positive integer j, there exist linear mappings E_j, R_j , and R'_j

 $(3.1) E_j: H^0_{0,0}(\Omega) \to H^{\text{loc}}_{0,0}(\Omega))$

(3.2) $R_j: H^0_{r,s}(\Omega) \to H^{\text{loc}}_{r,\tilde{s}}(\Omega) \$ for any real numbers r, s, \tilde{s}

 $(3.3) R'_{j}: H^{0}_{r,s}(\Omega) \to H^{\text{loc}}_{r,\tilde{s}}(\Omega)$

having the following properties:

- $(3.4) LE_{j}f = f + R_{j}f \quad in \ \Omega \quad f \in H^{0}_{0,0}(\Omega).$
- (3.5) $E_{j}Lf = f + R'_{j}f \quad in \ \Omega \quad for \ f \in H^{0}_{0,0}(\Omega) \ such \ that \ Lf \in H^{0}_{0,0}(\Omega).$ $\begin{cases} Take \ any \ \omega \in C^{\infty}_{0}(\Omega) \ and \ denote \ by \ l_{\omega} \ the \ maximum \ of \ the \ orders \\ of \ zeros \ of \ \sigma \ in \ the \ t-projection \ of \ supp \ \omega. \ For \ 0 < \delta < \frac{1}{2}(1+l_{\omega})^{-1},$ (3.6)
- (3.6) and any compact set K in (α, β) we have, with a constant C independent of f

 $\|\omega\partial^p/\partial x^p E_j f\|_{0,0} \leq C \|f\|_{p,-\delta} \quad f \in H^0_{0,0,K}(\Omega), \quad 0 \leq p \leq j.$

(3.7) Let K and ω be as in (3.6), then we have with a constant C independent of f

$$\begin{split} \| \omega R_j f \|_{r,\tilde{s}} &\leq C \| f \|_{r,s} \\ \| \omega R'_j f \|_{r,\tilde{s}} &\leq C \| f \|_{r,s} \\ \end{split} _{s,\tilde{s}} &\leq C \| f \|_{r,s} \end{split} _{s,\tilde{s}} f \in H^0_{r,s,K}(\Omega). \end{split}$$

Proof. We define E_j, R_j , and R'_j only for $f \in C_0^{\infty}(\Omega)$. The extension to the general f can be performed using the approximation by mollifier. Choose a function $\chi_j(\xi) \in C^{\infty}(R_{\xi}^1)$ such that $\chi_j(\xi)=0$ $(|\xi| \leq 2C_j+1)$, and $\chi_j(\xi)=1$ $(|\xi| \geq 3C_j+1)$, where C_j is the constant appearing in Lemma 2.1. From now on in this proof we drop the subscript j. Now define the operators U and E by the formula

(3.8)
$$Uf(x,\xi) = \chi(\xi)S_{\xi}\left(\int \exp\left(-i\xi\int_{0}^{t'}\sigma(s)ds\right)f(\cdot,t')dt')(x)\right)$$

(3.9)
$$Ef(x,t) = \frac{1}{2\pi i} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) Uf(x,\xi)d\xi$$

where $f \in C_0^{\infty}(\Omega)$.

From Lemma 2.1 (2.4.1) and Lemma 2.2 (2.9) we see that (3.9) is well defined, and Ef is continuously differentiable with respect to x up to the order j. Furthermore we can write

198

No. 3]

$$(3.10) \quad \partial^p/\partial x^p Ef(x,t) = \frac{1}{2\pi i} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) \partial^p/\partial x^p Uf(x,\xi)d\xi \\ (0 \le p \le j).$$

Applying Lemma 2.2 (2.10), Lemma 2.1 (2.4.2), and Lemma 2.2 (2.8) successively to (3.10), we obtain (3.6) for $f \in C_0^{\infty}(\Omega)$. On the other hand, when f vanishes near zeros of σ , Ef is continuously differentiable with respect to t also, and we can write using Lemma 2.1 (2.2) and Fourier inversion formula

(3.11)
$$LEf(x,t) = f(x,t) + \frac{\sigma(t)}{2\pi} \iint \exp\left(i\xi \int_{t'}^{t} \sigma(s)ds\right) (\chi(\xi) - 1)f(x,t')dt'd\xi.$$

For a general $f \in C_0^{\infty}(\Omega)$, approximating it in L^2 -norm by functions as above with supports contained in a common compact set in Ω , we see that (3.11) also holds for it. Now define R and R' as follows:

(3.12)
$$Rf(x,t) = \frac{\sigma(t)}{2\pi} \iint \exp\left(i\xi \int_{t'}^{t} \sigma(s)ds\right) (\chi(\xi) - 1)f(x,t')dt'd\xi$$

(3.13)
$$R'f(x,t) = \frac{1}{2\pi} \iint \exp\left(i\xi \int_{t'}^{t} \sigma(s)ds\right) (\chi(\xi) - 1)f(x,t')\sigma(t')dt'd\xi$$

Then, (3.4) holds for $f \in C_0^{\infty}(\Omega)$. (3.5) can be proved in a similar way. Finally, inequalities in (3.7) follow easily from definitions (3.12) and (3.13). Q.E.D.

§ 4. L²-estimate. Lemma 4.1. Let E_j be the parametrix constructed in Theorem 3.1. If $f \in H^0_{0,0}(\Omega)$ and $(\phi \partial / \partial x)_P f \in H^0_{0,0}(\Omega)$ $(0 \le p \le j)$ we can write

(4.1)
$$\frac{\partial^p / \partial t^p E_j f = \sum_{1 \le k \le p} \sigma_{p,k}(t) E_j((\phi \partial / \partial x)^k f)}{+ \sum_{0 \le l + m \le p - 1} \sigma_{p,l,m}(t) \partial^l / \partial t^l (\phi \partial / \partial x)^m (f + R_j f)}$$

where $\sigma_{p,k}, \sigma_{p,l,m} \in C^{\infty}((\alpha, \beta))$ are appropriate functions independent of f. **Proof.** This can be proved by induction on p using Lemma 2.1

(2.3) and Theorem 3.1 (3.4). Q.E.D.

Lemma 4.2. Let E_j be as in the above lemma. Choose any functions $\omega, \tilde{\omega} \in C_0^{\infty}(\Omega)$ such that $\tilde{\omega}=0$ near supp ω , and fix any integer psuch that $0 \leq p \leq j$. Then, $\omega E_j(\tilde{\omega}f) \in H_{p,q}$ for any positive integer q if $f \in H_{p,0}^{\text{loc}}(\Omega)$, and we have with a constant C independent of f(4.2) $\|\omega E_j(\tilde{\omega}f)\|_{p,q} \leq \|\tilde{\omega}f\|_{p,0}$ $f \in H_{p,0}^{\text{loc}}(\Omega)$. Proof is omitted.

Theorem 4.3. Let I, J be non negative integers. Assume that $u, (\phi\partial/\partial x)^k(Lu), and \partial^l/\partial t^l(\phi\partial/\partial x)^m(Lu) \in H^{\text{loc}}_{I,0}(\Omega) \text{ for } 0 \leq k \leq J \text{ and } 0 \leq l + m \leq J-1, \text{ then } u \in H^{\text{loc}}_{I,J}(\Omega).$ Take any two functions $\omega, \tilde{\omega} \in C_0^{\infty}(\Omega)$ such that $\tilde{\omega} = 1$ near supp ω , and let l_{ω} be the number defined in Theorem 3.1 (3.6), then, for every positive integer N and $0 < \delta < \frac{1}{2} (l_w + 1)^{-1}$, we have with a constant C independent of u

199

T. AKAMATSU

(4.3)
$$\begin{aligned} \|\omega u\|_{I,J} &\leq C \Big(\sum_{0 \leq k \leq J} \|(\phi \partial / \partial x)^k (\tilde{\omega} f)\|_{I,-\delta} + \sum_{0 \leq l+m \leq J-1} \|(\phi \partial / \partial x)^m (\tilde{\omega} f)\|_{I,l} \\ &+ \|(L\tilde{\omega}) u\|_{I,0} + \|\tilde{\omega} u\|_{I,-N} \Big) \end{aligned}$$

where f = Lu.

Proof. Using Theorem 3.1 (3.5) with j=I, we can write (4.4) $\omega u = \omega E_I(\tilde{\omega}f) + \omega E_I((L\tilde{\omega})u) - \omega R'_I(\tilde{\omega}u)$. Hence (4.3) follows from Theorem 3.1 (3.6), (3.7) and Lemmas 4.1, 4.2.

Q.E.D.

References

- [1] R. Beals and C. Fefferman: On the solvability of linear partial differential equations with C^{∞} coefficients (to appear).
- [2] L. Nirenberg and F. Treves: Solvability of a first order linear partial differential equation. Comm. Pure Applied Math., 16, 331-351 (1963).
- [3] ——: On local solvability of linear partial differential equations, Part I. Necessary conditions. Comm. Pure Applied Math., 23, 1–38 (1970).
- [4] ——: On local solvability of linear partial differential equations, Part II. Sufficient conditions. Comm. Pure Applied Math., 23, 459-510 (1970).
- [5] F. Treves: A new method of proof of the subelliptic estimates. Comm. Pure Applied Math., 24, 71-115 (1971).
- [6] ——: Hypoelliptic partial differential equations of principal type. Sufficient conditions and necessary conditions. Comm. Pure Applied Math., 24, 631– 670 (1971).