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1. Introduction. We consider boundary problems for elliptic
differential equations. When the manifold (with boundary) is compact
and its boundary is smooth, the indexes of elliptic boundary problems
are finite (see [1], etc.). When the manifold is not compact or the data
are not given on the entire boundary, the situation is different. Such
cases will be studied in this and the forthcoming papers (see Theorem 3).

Let be a a-compact C manifold (without boundary), and/2 an
open subset of . Let w be an open subset of the topological boundary
of/2 in . Then we denote by/2* the pair of/2 and w. We also use
/2* to denote the union of/2 and . Take an open subset/20 of such
that/2 is contained in/20 and the intersection of /20 and the boundary
of/2 in !P is equal to .

Let (/20) be a subspace of _q)’(/20) with a locally convex topology
(For the notation of our function spaces, see [1].). Let p be the restric-
tion mapping of .@’(/20) to _q)’(2). Then we denote by (/2") the space
p((20)), that is, (/2")= {u e .q)’(/2) u-p(Uo) for some u0 e (/20)}. This
space is endowed with the strongest locally convex topology such that
p is continuous from (/20) onto (/2"). Next we denote by (/2") the
closed subspace of (/20) defined by (9")- (u e (/20) supp uc/2*}.

In this paper we assume that is of C class. Let R denote the
trace operator of C(2*) onto C(w). Take a C vector field , in a
neighborhood of w which is not tangential to . By D we denote the
differentiation in the direction . Write ,-(R, R D, R o D, .,
R D-), for a natural number m.

2. Function spaces C(*) and (/2"). Proposition 1. The space
C(12*) is separable Frdchet Montel and its dual space is isomorphic to

Outline of the proof. Since C(/20) is a Frchet-Schwartz space,
C(/2*) is also Frchet-Schwartz (see [2]). Then the former part of the
proposition follows. Moreover the dual space of C(/2*) is isomorphic
to the polar of C(/2*) in ’(f20). Using a result due to Schwartz [5], p. 93,
we can easily obtain the latter part of the proposition.

Proposition 2. Let s e R and Z e C(12o). Take a compact subset
Kx in the interior of K----supp 25. Set
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p()-----inf {ll Z" I1(); + e C(/20) and I-=}, e C(t2*),
where 11"11(8) is a Sobolev norm (see [1]). Then u e H(_8)([2o) and supp u
t2* K1 implies the existence of a positive constant such that
-inf {C>O ]u()I<__C.p(), e C(2*)}_<_a.llull(_). Moreover u e ’([2")
and Ilu]lpoo implies that suppuc2*K and there exists a positive
constant fl such that u I]-) <= fl u

The proof of this proposition is straightforward and does not con-
taia any difficulty.

We can use the above propositions to apply our result in the previ-
ous paper [3], and then we obtain the ollowing results.

3. Elliptic equations in :(*). Let P be an m=2/-th order el-
liptic differential operator in 90, that is, P(x,)0 if x e [2o and 0,
where P is the top symbol o P. We consider the ollowing linear
differential equation"
( 1 ) P(u)=f,
where f and u are C unctions in

Theorem 3. Suppose o is a real analytic manifold and P is an el-
liptic differential operator with real analytic coefficients in [20. To every
relatively compact open subset U of o the union of all compact con-
nected components of 9*\ U is supposed to be relatively compact. Then
the equation (1) has a solution u e (*) for every f e (9"), which

satisfies (f)-----0 when e e’(*) and P()=0. Here P is the dual
operator of P.

Outline of the proof. To prove this theorem, we consider a linear
operator T of C(/2*) into C(2*) C(w) which is defined by T(u)
--(P(u), y(u)). Suppose that the range of T is closed. Let f e
satisfy (f)---0 when e (/2") and tP(qg--O. Then (f, 0, ...,0) is
contained in the range of T, and hence there exists u e C(/2*) which
satisfies P(u)--f in/2 and ,(u)-0. Then u becomes a solution of (1).
Therefore it is enough to prove that the range of T is closed.

Combining the results o section 2 and the previous paper [3], and
the well-know regularity theorem for elliptic boundary problems (see
[1]), we immediately obtain the ollowing lemma.

Lemma 4. The range of T is closed if and only if the following
two requirements hold.

To every compact set K9* there exists another compact set
K’c[2* such that q H0)(/2*), H(_/+i)(o), ]-- 1, 2, ..., m, and
supp(P(q)-,=tD-oR())K implies the existence of another

e I2Io)([2") and e H_//i)(o), ]--1, 2, ..., m which satisfy
( 2 ) supp FcK’, suppK’o, ]=1,2, ..., m,
and - ’R() ,p(r) +

__
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(ii) To every compact set K* there exists a positive constant
C such that /2/o)(/2"), qH_++)(o), suppK, and supp Kglo,
]--1, 2, ..., m implies the existence of another eo)(*), and

a e H_++)(w), ]= 1, 2, ..., m which satisfy (2), (3), and

Now we prove the requirement (i) o the above Lemma. Let K be
a compact subset of 9". Choose relatively compact open subset U of
90 which contains K. Let K’ denote the closure o the union o U
and all compact connected components o 9" U. From an assumption
o Theorem 3, K’ is a compact subset o 9".

Suppose that e 0)(9"), =(, ...,) e= [[H_++)()
and supp (tP()+ty())K. Then tp() is equal to zero in 9K, and
hence is real analytic in K (see Petrowsky [4]). Therefore is
equal to zero in 9K’. Since is an L function with support in 9",

is equal to zero in 90K’ Then try(0)is also equal to zero in wK’
and hence becomes zero in wK’. This completes the proof of (i).

Next we prove the requirement (ii) of Lemma 4. Let K be a com-
pact subset of 9*. Suppose that e0)(9*), =(,-..,)
suppK, and suppKw, j= 1,... ,m. Write ]])
s e R. In the following C represents a generic constant which does not
depend on the choice of and . Since tp is elliptic and hence has a
parametrix, we have the following estimate.

Let be a C function with compact support in w such that Z-1 in
a neighborhood of K w. Then we can prove the existence of a con-

o _)() into o (9*) and atinuous linear operator S of = =,(_
pseudo-differential operator Q_ of degree on w such that P S(Z. u)
=0 and TS(z.u)=z.u+Q_(.u), ue (see [6], etc.). Using these S
and Q_, we can easily obtain the estimate
( 6 ) ]][[_)C.tp()+ t7()[[(_)+6. --1).
From (5) and (6) we have the estimate

Now suppose that (ii) of Lemma 4 does not hold. Then there exist
sequences e o)(9") and ( e if, n=l, 2,... such that

(a) suppcK, supp()cK, and IP()+r(())l(_)o
n

(b) there exist eo)(9*) and +()e which satisfy supp
supp (, c K w, tp() + t7 ((,) tp() + t7 (()), and 11<0
+ II<> I1-)= 1, and

(e) eo)(9*), e, suppcK, suppKw, and tp()

+ r(+)-P(O) + r(()) implies ll<0) + II-) 1.
From Rellieh’s theorem there exist subsequences of and
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n= 1, 2, which converges to some 0 and 0) with respect to norms
[[.[[_) and [[’ll--) respectively. We write the subsequences by the
same letters. Then tp()+ t,(p()) converges to
Set ’--0 and )=P()-(0), n-l,2, .... Then it follows from
(c) that II(0) + +)II-) => 1. But this contradicts (7), and hence (ii)
holds. This completes the proof of Theorem 3.
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