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I. Results. We consider a compact connected piecewise linear 3-
manifold M? which may be either orientable or non-orientable. If
there is a component of the boundary oM?® of M? which is homeomorphic
to S?, we attach a 3-cell to eliminate it. Note that the orientability
of the resulting manifold coincides with that of the original one. Thus
we assume that the boundary oM*® contains no components which are
homeomorphic to S* throughout this note. Under this assumption
compact 3-manifolds with z,=27, Z being an infinite cyclic group will
be classified modulo Poincaré Conjecture. The classification implies
that such a manifold is essentially the S*bundle over S*: S'x.S?, the
twist S?-bundle over S': S'x_S? the solid torus: S'x B? or the solid
Klein bottle: S*'x B

First, by using results of H. Kneser [2], J. H. C. Whitehead [8]
and J. W. Milnor [3], we shall prove the following :

Theorem 1. If oM*=¢ and =, (M*)=Z then M?®is homeomorphic to
the connected sum (S‘><S2)1¢S3 or (SIX,SZ)#.§3 according as M® is orient-
able or non-orientable, where S¢ is o homotopy 3-sphere.

Next, using Partial Poincaré Duality due to the present author [1],
we shall obtain the following :

Theorem 2. If oM*+¢ and = (M*)=Z then M?is homeomorphic to
(S‘><BZ)1$§3 or (St ><,BZ)1$§3 according as M3 is orientable or non-orient-
able. In particular, in case M® is orientable, M® may be considered as
cl(St-unknotted solid torus).

From Theorems 1 and 2 we obtain the following Conclusion :

Conclusion. Any compact connected 3-manifold with n,=Z 1is
homeomorphic to (S'xS)#SE, (S'x.S)ES, (S'x BH#S or (S'x .BYES:
with o finite number of open 3-cells removed.

I1. Sketch of proofs. Proofs will be considered in the piecewise
linear category.

Proof of Theorem 1. By a result of H. Kneser [2], M? is homeo-
morphic to P#S?, where P is a prime 3-manifold in the sense that if P
is homeomorphic to P,#P, then P, or P, is a 3-sphere. Since 7,(P)=7Z7,
from the sphere theorem in the sense of J. H. C. Whitehead [8], we
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obtain a 2-sphere X in P which does not bound a 3-cell. Because P is
prime ¥ does not separate P. Hence cutting along 3 and attaching
two 3-cells to eliminate the resulting boundaries, we have a closed
manifold P’. Choose a 3-cell B® in P’ containing these pasted two 3-
cells in the interior. Then P’'=cl(P’'—B®) U B?® and the original manifold
P becomes cl(P’—B*)UX, where X is obtained from B® by removing
disjoint two open 3-cells and then matching the resulting boundaries.
Therefore P is homeomorphic to P'#(S* xS or P'#(§'x.S?. Since P
is prime, P is homeomorphic to S*x.S? or §'x,S%. (The above technique
appears in J. W. Milnor’s paper [3, Lemma 1].) This completes the out-
lined proof.

Proof of Theorem 2. Let p: M*—M® be the universal covering
which is obviously infinite cyclic. To prove that the homology H,, (I3 3 Z)
is finitely generated, we need Lemma :

Lemma. For each component F of M3, the canonical homomor-
phism o, (F)—rn,(M?) is non-trivial.

Using this Lemma, each component of the preimage p~!(F) is an
infinite cyclic covering space over F' because n,(M*=Z. (See[l, Lemma
3.1].) Hence each component of oM is non-compact. This implies
H,(3M?*; Z)=0. By the Partial Poincaré Duality [1, Theorem 2.1], we
have H,(M?, aM*; Z) ~ H'(M?; Z) ~ Z. Using the homology exact sequence
of the pair (J1*,3M1°), we obtain that H,(M?*; Z) is finitely generated.
Thus H,(M*; Z) is finitely generated.

Again, applying the Partial Poincaré Duality, H!(M?®; Z)
~H,_ ,(VI*,6M?*; Z) for any i. An easy computation shows that I?® is
contractible. Hence M?® is homotopy equivalent to S* and 9M?® is homeo-
morphic to the torus or the Klein bottle (Note that 6M® is connected
and Euler characteristic y(8M°) is equal to 2y(M*=2y(S")=0). By the
loop theorem [6], we can choose a proper 2-cell D in M? so that 6D does
not separate oM3. Cutting along D, we obtain a manifold M* whose
boundary oM* is a 2-sphere, for an easy computation implies y(@M*)
= 2. Choose a 3-cell B® containing two copies of D so that 4
=cl(M*—-B* N B is a proper 2-cell in M*. Then M*=cl(M*—B%)UB?
and the original manifold M*® is homeomorphic to the disk sum
cl(M*—B%)5X, where X is obtained from B® by matching disjoint two
2-cellsin 9B*—4. Therefore M*is homeomorphic to cl(M* — B%)4(S' x B?)
or cl(M*—B%g(S*x .B). Using n(M>=Z, we see that cl(M*—B® is a
homotopy 3-cell. Hence M*® is homeomorphic to S%;(Sl X B% or
Se#(Sx .BY). This completes the proof.

Proof of lemma. Suppose that for some component F' of dM* the
canonical homomorphism z,(F)—r,(M? is trivial. Since F is not a 2-
sphere we can choose two simple polygonal loops I, and [, in F' which
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intersect transversally in a single point. [, [, are null homotopic in M°.
Hence, by Dehn’s lemma [5] or the loop theorem [6], there exist (poly-
hedral) 2-cells D,, D, in M*® bounded by I, [, such that D,NoM*=1,
D,NoM3*=1,, respectively. Consider the intersection D, N D, and keep
an eye on the intersection curve L starting from the intersection point
I,Nl,. Then L must be an endless line. This is obviously impossible.
Thus we prove Lemma.

III. Supplementary remarks. Theorem 2 can be also shown by
using the Stallings fibration theorem [7] instead of the Partial Poincaré
Duality. This duality for 3-manifolds is weaker than the Stallings
fibration theorem, but more general. The following discussion shows
the relation between them: If M?is a covering space associated with
epimorphism y: z,(M*—Z and if H 1(M ¢; R) is finitely generated over a
principal ideal domain R and if M? is orientable over R, the Partial
Poincaré Duality implies that H *(117[ *s R) is finitely generated and
H(T*; G)~H,_ ,(M*,8lI*; @) for any ¢ and any R-module G.

If ker [y : #,(M*)—Z] is finitely generated and is not Z, and if M® is
irreducible, Stallings showed that M? is a fiber bundle over S' whose
fiber is a (proper) connected surface F' in M® This implies that, in
fact, M? splits: (W%, aM%)=(F, 9F) X R, hence, in case M? is orientable,
there is a duality H!(M®; Z) ~,_,(M*, aM*; Z) for any i.

On the other hand, if H,(M?®;Z)=Z, then it can be shown
that H*(JW; Q) is finitely generated over Q. In case dM*+¢, we see
that 6M° is homeomorphic to S* X S* or S!x,S"' according as M? is orient-
able or non-orientable. If M?is orientable, there is a duality H!(/I*; Q)
~H, (1%, 30I*; Q) for any i. For =0, we infer that H'(JM*; Z)
~H,(M*, aM*; Z)~Z. The knot theory is known to be a non-trivial
example of useful applications of this duality. (See J. W. Milnor [4].)

Because of the absence of the theory corresponding to the Stallings
fibration theorem, the Partial Poincaré Duality is expected to be useful
for 4-manifolds. For example, using this, the following is shown: A
locally unknotted 2-knot S? in 4-sphere S* (in the piecewise linear cate-
gory) is algebraically unknotted if =, (S*—S»=2Z. See [1].
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