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Consider a system of nonlinear integral equations of Volterra-type

(P) x(t) f(t) + [o g(t, s, x(s))ds.

Recently R. K. Miller and G. R. Sell [1] proved some fundamental
theorems of (P) under airly general assumptions on f(t) and g(t, s, x)
similar o the Carathodory-ype. They showed that the cross-section

F(t)=(y’y=x(t), where x is some solution of (P)}
is compact in R for all t e [0, a), where a is either c or a finite
number such that there is a solution x(t) of (P) or which lim sup. x(t)
c. This appears to be a generalization of H. Kneser’s theorem to

integral equations.
For the case where g(t, s, x) is a bounded continuous function of

(t,s,x) on {O<=s<=t=a}R, Sago [3] has shown hat F(t) is a con-
tinuum, i.e., a compact and connected set or all t e [0,a]. One o the
present authors later proved in [4] that the amily o all solution-curves
is a continuum even in C[0, a].

We think that it is interesting to know whether F(t) is a continuum
or not or all t e [0, a) under the weaker assumptions of Miller and
Sell. The purpose of this note is to give an answer in the affirmative
for this problem. Moreover, we can demonstrate hat the amily of
solutions o (P) is also a continuum i the Frchet space C[0, a). x)

Since the method we employed in this paper mainly depends on
Carathodory iterates, there is no need in our proof to use the approxi-
mate unctions g to g satisfying the Lipschitz condition which was
employed in [3] and [4].

We assume he hypotheses (H1)-(H5) on f(t) and g(t, s, x) used in
our previous note [5]. We shall show the following main theorem.

Theorem. Let the functions f and g satisfy (H1)-(H5), then there
exists a number 0 such that/or each t e [0, a) the set F(t) is com-
pact and connected as a subset of R. Moreover the number is

1) After completing this manuscript, we found that W. G. Kelly (Proc. Amer.
Math. Soc., 40, 1973) proved a local Kneser property, that is, the set [x(t) C[0,d];
x(t) is a solution of (P) on [0,d]] is compact and connected in the space 5"[0,d] for
any d.
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maximal in the sense that either a-c or there exists a right maxi-
mally defined solution x(t) of (P) whose domain of definition is the
interval [0, a).

Proo. It is sufficient to show that F(c) is connected or each
c e [0, a). Suppose the contrary. Since F(c) is compact, F(c) can be
expressed as a union of two disjoint nonempty compact sets, i.e., F(c)
F U F, where F and F. are nonempty compact sets such that F F.

=. Hence we can choose an open set O such that F O and O F
=. Let (t) and (t) be continuous solutions which pass through
ql F and q e F respectively. By Proposition 2 in [5] we see that or
some r00 and 00, the values of any e-Carathodory iterates (t; $, e)
at of (t) belong to V(F*(c), ro) on [0, c] (i=1,2) or every positive
e (_-<0) and every e [0, c]. Then our definition implies that the relation

(; , )-f(t)+.[, g(t, s, ,(s; , e))ds ( 1

holds, where the unction (t; , D associated with (t; , D is defined
by

If(0) on [--, 0]
(t , )=(t)=(t , ) on [0, ]

[(t-- , D on (, c].
We shall show that (c , D, (i--- 1, 2) is continuous in e [0, c] or each
fixed e e (0, 0]. The relation

(c , e)--(c , D--f: (g(c s, (s , e))--g(c, s, (s , D)}ds
is valid by (1). Moreover by the definition of , (s , D e V(F*(c), to)
or any s in [0, c] and for any in [0, c]. Hence, if we take re(t, s) in
(H3) corresponding to 1--c and K=V(F*(c),ro), (s;,D satisfies
[g(t, s, (s , e))[m(t, s). Thus, to prove the continuity of (c , )
in , we must verify that

lim (t , ) (t , D ( 2 )
or almost every fixed te [0, c]. For simplicity, we put (t)---(t), (t; )
--(t; , D and (t; )--(t; , D. First we shall show that (2) holds
or every t e [0, c] if $ , i.e., tend to monotonely decreasing as
k-oo. Let e [0, D. For a fixed t e [0, ] we obtain by (1) that (t; )
=(t; )--(t), so that (2) holds. We take such that the inequality
e holds. Then by the definition o (t;), we have for
t e [, + ] that

[(t) when t e [, ]
(t )= f(0) when t e (, ]

[(t--D when t e [, + ].
Let t e (, ] be fixed. Then (t; )=(t )=f(0) or sufficiently large
k such that <t. Next let te(, +] be fixed. Then (t; )=(t; )
=(t--D or such that$<e. Hence (2) holds for every te(, +]
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and consequently for every t e [0, -t- ]. For each fixed t e (/ , + 2]
we take such that t--. Since the. equality

(t; )=(-- )

f(t-s)+ (t-s, , ())d+ g(t--s, , f(0))g

holds, we have

Henee we can verify (2) for each fixed t (+ e, + 2el and consequently
for every t e [0, + 2s]. Pot each fixed t e (+ 2s, + 8el we take such
that < < t-- 2s. hen we have

(t ) f(t-- s) + (t- s, , ())g+ g(t- s, , f(0))g

+ g(t--s, s, (s--e))ds+ g(t--s, s, (s ))ds,

so that

e(t ,) e(t )] ]g(t--,, s, (s))] ds + g(t--,, s, f(0)) ds

+2 g(t , s, (s-D)[ds
J+

+ {(t-, , (; ))-(t-s, , (;
+

holds. First two integrals tend to zero as +. Since (2) is verified
for every t e [ +, + 2], from (H2) (ii) and (H3) we see by the L.d.c.th.
that lim,+ I 0. Thus we can show (2) or each fixed t e (+ 2, + 3e]
and or every t e [0, + 3]. Continuing in this fashion n times, we have
for each t e (+n, + (n+ l)e] and satisfying + t-n that

JEn

+ {(t-s, , (; b)-(t-s, , (;
+

where N [, ] U [+ s, + s] U U [+ (- 1)s, + (- 1)s]. Hence
by induction, we have (2) on [0, + s] for all positive integer . If we
take so large that +se, (2) can be verified to hold for every
t e [0,

Pot e Is, e), it is slightly easier to show that () holds at for every
t e [0, e] as ; . Similarly we can show tha (2) holds at e (0, e] for
every fixed t [0, e] except one oint if , i.e., tend to mono-
tonely increasing as. herefore (e; , s) is continuous in e [0,
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That (c; 0, D=.(c 0, ) is trivial.
We shall now define a curve

B()= (c; c I1,), -_<_o
.(c c [rl, ), 0__<_1.

Then this curve B,(r) is a continuous curve which connects two points
ql and q.. Hence B,(r) must pass through some point d, in 301VK,
where d,--(c , ) (i--i(D-- 1 or 2) and =(), both depending only
on . Consequently we can find a sequence (} such that

lim 0 (monotonely decreasing), i(n) 1 or 2

and
lim d--do e 30 V K, where d--d,.. ( 3 )

Moreover by taking a suitable subsequence o {n} if necessary, we may
assume that i()=const. (--1 for example).

We put
Cn(t) =(t , ), (t)=(t , ),

where $=$(). Hence

Cn()= f(t) +: g(,s, n(s))ds (4)

for each t e [0, c], where

If(0) on [-e, 0]
(t)= J(t)=(t) on [0, n]

[(t--) on (, c].
As proved in Proposition 2 in [5] we can prove that {(.)} is relatively
compact in C([0, c];V(F*(c),r0)). Hence we can find a subsequence
{k} c {n} and 0(" e C([0, c]; V(F*(c), to)) such that

lim (t)=lim 4(t) =0(t) uniformly in t e [0, c]. 5 )

Then (4) implies that 0(t) is a continuous solution of (P) on [0, c]. By
(3) and (5), we have

lim d lim (c $, )

f(c) / lim | g(c, s, 4(s))ds
j0

0(c)= do e 001 gl K,
which contradicts the assumption that F(c)=F (3 F and F F.=.

Remark 1. (H5) is only needed in the proof of the latter half of
the Theorem.

Remark 2. As seen in Proposition 2 in [5], if for a fixed s0, -Carathodory iterates {,(" ;$,s)}e0, is relatively compact in
([0, c] K), then we have lim, (t ’, D=(t , D uniformly in
t e [0, c].
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In the Frchet space C[0,) with compact-open topology, we have
the following result.

Corollary. The solution family of (P) is also a continuum in
the Frecht space C[0, OM).

Proof. To show this, it is sufficient to prove that is a continuum
in the Banach Space 5’[0, c] or every c e [0, a). Define a family []
of continuous functions on [0, c] by the set of d-Carathodory iterates
at every e [0, c] or all solution of (P) and all d e (0, ], that is

[]={x(., , ) e C[0, c]" x(.) e , 0__<_<_c, 0<’<}.
Then [s] is decreasing as $ 0, [] and [] is relatively compact
in C[0, c] by Proposition 2 and the Remark after it in [5]. Hence if
[] is verified to be connected, the closure [] in [0, c] is a conti-
nuum.. Now take any two unctions q(. , ) and (. , s) of [s],
where (.) and (.) are solutions of (P). Since (. , ) (i= 1, 2) con-
sidering as parameter varies continuously in C[0, c], the family
{(. ;,e);g__<c} is a continuous curve in C[0, c], connecting

1(, ,s) and (. c,)=(.). The family {(. ,e); 0_<__<_c} con-
nects (.)to (. 0, e)=(. 0,) continuously. Finally, the amily
{.(. , ) 0__< __<} is a continuous curve in C[0, c] connecting

2(" ;0, s.) and 2(" ;., s2). Thus we have proved that [e] is (arcwise)
connected. To complete the proof, it is sufficient to show that ( [s]
=. For any (.) e ( [], by definition we have a sequence {(.)}
such that lim (.)-(.) in C[0, c], Cn(’) e [] (lim_ --0) and

(t)--f(t)+.[: g(t, s, (s))ds for each t e [0, c]

where n(’) is the unction associated with q(.). Since lim_ (t)
--(t) uniformly in t e [0, c] is verified, by letting n tend to we
see that (t) is a solution of (P), i.e., (.) e . Since []- is
trivial, we see that ( [] .
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