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In this note we .state a theorem on (micro-) analyticity of the ele-
mentary solutions of hyperbolic differential equations with (not neces-
sarily constant) multiple characteristics. Our result is a generaliza-
tion of those of Kawai [1], HSrmander [2] and Andersson [3] which
deal with operators with simple characteristics. (See Atiyah-Bott-
Grding [4] for operators with constant coefficients.)

If an m-th order differential operator P(t, x, Dt, D) is hyperbolic
with respect to the direction (1,..., 0), there exists a unique elementary
solution of the Cauchy problem, that is, m-tuple of hyperfunctions
E(t, x) (]= 1,..., m) such that

P(t, x, Dr, Dx)Ej(t, x)--0,
D-E(O, x)---(x) (i, ] 1, ..., m).

(See Kawai [5] and Bony-Schapira [6].) Our problem is to decide the
singular spectrum of E(t, x).

Recently Kashiwara-Kawai [7] defined micro-hyperbolicity and
constructed good elementary solutions for micro-hyperbolic operators,
The essential key to our theorem is their deep analysis in micro-local
sense. Remark that our lemma is valid for pseudo-differential
operators.

Here we treat only the simplest case. More complete results and
proofs will be published elsewhere.

First we set up a class of operators which can be easily handled.
Let P(x, D) be a pseudo-differential operator defined in a neighborhood
of Xo*=(Xo, o) e P*X. Let a(P)(x, )=p’(x, )...p?(x, ) be an irreducible
decomposition at x0*. We call P(x,D) reductive if each p(x,) is
simple characteristic, that is, d(,,)p(x,) is not parallel to ,, ,dx,.
In this case we can define r-bicharacteristic strips through x0*. A
hyperbolic differential operator is called reductive if it is reductive at
each point on its real characteristic variety.

Examples.
D--t(D+D)

D’D c(t, x, y)D--d(t, x y)D)(D--a(t, x, y)D--b(t, x,.v v --where a, b, c and d is positive for real (t, x, y).
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Now let us define characteristic conoid of a reductive hyperbolic
differential operator. Let P(t, x, Dr, D) be a reductive hyperbolic dif-
ferential operator with respect to the direction (1, ..., 0) defined in a
neighborhood o the origin. Let V= ((t, x, r, ) e ffL-S*M/a(P)(t, x, r,

)-0} and D-- {(t, x, r, $) e V/the number of bicharacteristic strips
through (t, x, r, )>__2}. We assume the ollowing" at each point (to, x0,

r0, 0)e D, the number o bicharacteristic strips is two and i a(P)(t, x,
r, )-p(t, x, r, )p(t,x,r, ) is an irreducible decomposition, {p, p}(t0, x0,

r0, 0):/= 0 where {, } denotes Poisson bracket. Let us pursue a bicharac-
teristic strip through (0, 0, r, ) e z-(0) V where " /-L-S*MM. It
will all across D. Then two bicharacteristic strips come orth from
there and they may again all across D and so on. We call the union
of these bicharacteristic strips the characteristic conoid.

Theorem. The elementary solution E(t, x) is micro-analytic ex-
cept the characteristic conoid.

The essential part of the proof of this theorem is the ollowing
lemma.

Lernma. Let P(t, x, Dt, Dx) be a pseudo-differential operator
defined in a neighborhood of (0, ..., 0, -A-(0, ..., 1)c) such that a(P)
=-tr. If a microfunction u satisfies

a) P(t,x, Dt, Dx)u--O,
b) u=O on {(t,O, ...,0, /-2-i(0,..., 1))/t<O}U{(O,...,0, /-2i(t,

0,..., 1)oo/t <0} or b’) u= 0 on {(t, 0,..., O, J-:-i(O, ..., 1)c/t <0} U {(0,
..,0, J-L-l(t,O,..., 1)c)/t>O}, then u=O at (0,...0, J-2-i(O,..., 1)oo).

This is an easy corollary of the existence of a good elementary
solution of Kashiwara-Kawai.
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