No. 4]

56. A Remark of a Neukirch's Conjecture

By Keiichi KOMATSU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

Introduction. Let Q be the rational number field, \overline{Q} the algebraic closure of Q and G_Q the Galois group of \overline{Q} over Q with Krull topology. In [4] Neukirch gave a conjecture to the effect that any topological automorphism of G_Q is inner. In this paper we shall show the following affirmative datum:

Theorem. Let α be a topological automorphism of G_q . Then for any element τ in G_q , there exists an element σ_{τ} in G_q such that $\alpha(\tau) = \sigma_{\tau}^{-1} \tau \sigma_{\tau}$.

Some properties of decomposition groups of non-archimedean valuations, which we shall use to get the above theorem, also shall be stated with a result that the center of G_{q} is trivial.

§ 1. The center of G_k . Let Q be the rational number field and \overline{Q} the algebraic closure of Q. For any subfield K of \overline{Q} , let G_K be the topological Galois group of \overline{Q} over K. In this paper field means a subfield of \overline{Q} .

Definition 1. Let K be a subfield of \overline{Q} and v a non-archimedean valuation of K. K is said to be henselian with respect to v if an extension of v to \overline{Q} is unique.

Lemma 1 (cf. [1]). For a proper subfield K of \overline{Q} , let v_1 and v_2 be non-archimedean valuations of K. If K is henselian with respect to v_1 and v_2 , then v_1 and v_2 are equivalent as valuation.

Let k be a subfield of \overline{Q} and \overline{v} a non-archimedean valuation of \overline{Q} . We denote by $D_k(\overline{v})$ the decomposition group of \overline{v} in G_k and by $N_k(D_k(\overline{v}))$ the normalizer of $D_k(\overline{v})$ in G_k . Since $D_k(\overline{v})$ is a closed subgroup of G_k , there exists the subfield K of \overline{Q} such that $G_K = D_k(\overline{v})$. Then K is henselian with respect to the restriction $\overline{v}|_K$ of \overline{v} to K. We denote by x^v the image of an element x in \overline{Q} by an automorphism σ in G_q and by \overline{v}^v the valuation of \overline{Q} such that $\overline{v}^o(x) = \overline{v}(x^o)$ for any element x in \overline{Q} . Then we have

 $(1) D_k(\overline{v}^{\sigma}) = \sigma D_k(\overline{v}) \sigma^{-1}$

for any element σ in G_k .

Lemma 2. If k is a finite extension of Q, then we have $D_k(\overline{v}) = N_k(D_k(\overline{v}))$ for any non-archimedean valuation \overline{v} of \overline{Q} .

Proof. It is clear that $D_k(\overline{v})$ is contained in $N_k(D_k(\overline{v}))$. So it is sufficient to show that $\overline{v}^{\sigma} = \overline{v}$ for any element σ in $N_k(D_k(\overline{v}))$. Let σ be

any element in $N_k(D_k(\overline{v}))$. Since we have $D_k(\overline{v}^{\sigma}) = D_k(\overline{v})$ by (1), the subfield K of \overline{Q} such that $G_K = D_k(\overline{v})$ is henselian with respect to $\overline{v}|_K$ and $\overline{v}^{\sigma}|_K$. Since k is a finite extension of Q and since \overline{v} is a non-archimedean valuation of \overline{Q} , K is a proper subfield of \overline{Q} . Hence $\overline{v} = \overline{v}^{\sigma}$ follows from Lemma 1.

Lemma 3. Let \overline{v}_1 and \overline{v}_2 be non-archimedean valuations of \overline{Q} and k a finite extension of Q. If \overline{v}_1 and \overline{v}_2 are not equivalent, then the intersection of $D_k(\overline{v}_1)$ and $D_k(\overline{v}_2)$ is trivial.

Proof. Let K_i be the subfield of \overline{Q} such that $G_{K_i} = D_k(\overline{v}_i)$ for i=1,2. We denote by L the composition of K_1 and K_2 . Then L is henselian with respect to $\overline{v}_1|_L$ and $\overline{v}_2|_L$. So $L = \overline{Q}$ follows from Lemma 1.

Proposition 1. Let k be a finite extension of Q. Then the center of G_k is trivial.

Proof. Let \overline{v}_1 and \overline{v}_2 be non-archimedean valuations of \overline{Q} such that they are not equivalent. Let τ be any element in the center of G_k . $\tau^{-1}D_k(\overline{v}_i)\tau = D_k(\overline{v}_i)$ shows that τ is an element of $N_k(D_k(\overline{v}_i))$. So it follows from Lemmas 2 and 3 that $\tau = 1$.

§ 2. A remark of Neukirch's conjecture. For a non-archimedean valuation \overline{v} of \overline{Q} , we denote by $D(\overline{v})$ the decomposition group of \overline{v} in G_0 . From Theorem 1 in [3] follows the following:

Lemma 4. Let \overline{v} be a non-archimedean valuation of \overline{Q} and α a topological automorphism of $G_{\mathbf{Q}}$. Then there exists an element σ in $G_{\mathbf{Q}}$ such that $\alpha(D(\overline{v})) = \sigma^{-1}D(\overline{v})\sigma$.

In [3] Neukirch proved that for algebraic number fields k_1 and k_2 which are finite Galois extensions of Q, $G_{k_1} \cong G_{k_2}$ implies $k_1 = k_2$. So we have $\alpha(G_k) = G_k$, for any topological automorphism α of G_Q and any finite Galois extension k of Q. Thus it follows that α induces an automorphism α_k of Gal (k/Q). We shall use the following Lemma (cf. [2]).

Lemma 5. Let α be a topological automorphism of $G_{\mathbf{Q}}$. If k is a finite abelian extension of \mathbf{Q}, α_k is identity automorphism of Gal (k/\mathbf{Q}) .

Definition 2. Let \overline{v} be a non-archimedean valuation of \overline{Q} lying above a prime number p and φ an automorphism in $D(\overline{v})$. The automorphism φ is said to be a Frobenius automorphism of \overline{v} if $\zeta^{\varphi} = \zeta^{p}$ for any root ζ of 1 of order prime to p.

Theorem. Let α be a topological automorphism of G_Q . Then for any element τ in G_Q , there exists an element σ_{τ} in G_Q such that $\alpha(\tau) = \sigma_{\tau}^{-1} \tau \sigma_{\tau}$.

Proof. Let $\{K_n\}_{n=1}^{\infty}$ be a sequence of finite Galois extensions of Q such that $\overline{Q} = \bigcup_{n=1}^{\infty} K_n$ and such that $K_n \subset K_{n+1}$. Let τ be any element in G_q . From the density theorem it follows that for any positive integer n there exists a non-archimedean valuation \overline{v}_n of \overline{Q} such that $\overline{v}_n|_{K_n}$ is unramified in the extension K_n over Q and such that $\varphi_n G_{K_n}$

254

 $=\tau G_{K_n}$, where φ_n is a Frobenius automorphism of \overline{v}_n . Since we have $\alpha(G_{K_n})=G_{K_n}$, it follows that $\alpha(\varphi_n)G_{K_n}=\alpha(\tau)G_{K_n}$. From Lemma 5, it follows that $\zeta^{\alpha(\varphi_n)}=\zeta^{\varphi_n}$ for any root ζ of 1 and from Lemma 4 it follows that there exists an element σ_n in G_Q such that

 $\alpha(D(\overline{v}_n)) = \sigma_n^{-1} D(\overline{v}_n) \sigma_n = D(\overline{v}_n^{\sigma_n^{-1}}).$

If \overline{v}_n lies above a prime number p, then $\overline{v}_n^{\sigma_n^{-1}}$ lies above p. So $\alpha(\varphi_n)$ is a Frobenius automorphism of $\overline{v}_n^{\sigma_n^{-1}}$. Thus we have

 $\alpha(\tau)G_{\kappa_n} = \alpha(\varphi_n)G_{\kappa_n} = \sigma_n^{-1}\varphi_n\sigma_nG_{\kappa_n} = \sigma_n^{-1}\tau\sigma_nG_{\kappa_n}.$

Since G_{q} is compact, there exists a limit point σ_{τ} of the sequence $\{\sigma_{n}\}_{n=1}^{\infty}$. Then we have $\alpha(\tau) = \sigma_{\tau}^{-1} \tau \sigma_{\tau}$.

Let α be a topological automorphism of G_Q . Now we shall give a condition for α to be inner.

Proposition 2. For a topological automorphism α of G_q , the following assertions are equivalent:

1) α is inner.

2) There exist an element σ in G_Q and a prime number p such that $\alpha(D(\overline{v})) = \sigma^{-1}D(\overline{v})\sigma$ for any valuation \overline{v} of \overline{Q} lying above p.

Proof. It is trivial that 1) implies 2). So it is sufficient to show that 2) implies 1). Let \overline{v}_1 and \overline{v}_2 be valuations of \overline{Q} lying above the prime number p which are not equivalent. For any element τ in G_q we have

 $\begin{array}{ll} \alpha(\tau^{-1}D(\overline{v}_i)\tau)\!=\!\alpha(D(\overline{v}_i^{\tau^{-1}}))\!=\!\sigma^{-1}D(\overline{v}_i^{\tau^{-1}})\sigma\!=\!\sigma^{-1}\tau^{-1}D(\overline{v}_i)\tau\sigma, \qquad i\!=\!1,2. \end{array}$ Otherwise we have

$$\alpha(\tau^{-1}D(\overline{v}_i)\tau) = \alpha(\tau)^{-1}\sigma^{-1}D(\overline{v}_i)\sigma\alpha(\tau), \qquad i=1,2.$$

So we have

 $D(\overline{v}_i) = \sigma \alpha(\tau) \sigma^{-1} \tau^{-1} D(\overline{v}_i) \tau \sigma \alpha(\tau)^{-1} \sigma^{-1}, \qquad i = 1, 2.$ From Lemmas 2 and 3 follows $\alpha(\tau) = \sigma^{-1} \tau \sigma$.

References

- W. D. Geyer: Unendliche algebraische Zahlkörper, über denen jede Gleichnung auflösbar von beschränkter Stufe ist. Journal of Number Theory, 1, 346-374 (1969).
- [2] T. Kanno: Automorphisms of the Galois group of the algebraic closure of the rational number field. Kodai Math. Sem. Report, 25, 446-448 (1973).
- [3] J. Neukirch: Kennzeichnung der p-adischen und der endlich algebraischen Zahlkörper. Inventiones Math., 6, 296-314 (1969).
- [4] ——: Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterung. J. Reine Angew. Math., 238, 135-147 (1969).