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107. Initial-Boundary Value Problems of Some Non-Linear
Evolution Equations in Orlicz-Sobolev Spaces

By Kenji NISHIHARA
(Comm. by Kinjird KUNUGI, M. J. A., Sept. 12, 1974)

1. Introduction. Let £ be a bounded domain in R* with boundary
0f2. Recently in his paper [1] T. Donaldson proved the existence of
weak solutions (in some Orlicz-Sobolev spaces) of non-linear elliptic
boundary value problems of which are given two examples

a1 ién D,(u-exp (D;w)?*) + D,(exp BD, w))=f, >0
and ,
1.2) i%ﬂ D,(Du)* In (Duw)=f

both associated with the boundary condition % |,,=0.

Originally Leray and Lions suggest in [4] an introduction of Orlicz-
Sobolev spaces for those problems as (1.1), (1.2).

In this paper we consider the initial-boundary value problems for
evolution equations of the form

ou
1.3 L L Au=
a.3) pv +Au=f
with conditions
1.4) w(x, 0)=uy(x)
(1.5) Ulg=0

in some Orlicz-Sobolev spaces where Au are of a growth not equivalent
to any power and are similar to (1.2). Our equations (1.3) furnish a
simple example:
ou_ & 9 (‘ ou [P~ ou )ln(‘ ou
ot =1 ox; \| o, ox; 0%, |
2. DPreliminaries. In this section we give some necessary defini-
tions and lemmas from Orlicz spaces which are referred to in [3], [2].
We call a function an N-function if it admits of the representation

11
@.1) M(s>=jo p(t)dt

where the function p(t) is upper-continuous for ¢>0, positive for £>0
and non-decreasing with conditions
p(0)=0, lim p(¢) =co.
t—oo

+1)=f, p>2.

M(&), a real-valued function on R?, is an N-function if and only if
M(¢) is a continuous even function which is convex, increasing for >0
and satisfies
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lim /2 M©) =0, lim /%2

= & s
N(z), a real-valued function on R!, is said to be the complementary
N-function to M(&) if it admits of the representation

@2.2) N@):ﬂ”' gs)ds,  g(s)=sup {t|pt)<s).

We denote M, (&) <M,(&) if there exist constants &0, £>0 such that
M,(&)<M,(k&) for £>¢,.
M(¢) and M,(¢) are said to be equivalent and written M,(&) ~M,(&) if
M(&) <M,(&) and M, (&) <M ,(8).
We say an N-function M(¢) satisfies the 4,-condition if there exist
constants &,>0 and £>0 such that
M@28)<kM(g)  for §>¢,.
The Orlicz class Ly (2)=L, is the set of functions u(x) such that

ID Mu(x)da< + oo.

The Orlicz space LE(2)=L% is the linear hull of L,,. L% ismadea
Banach space by the Luxemburg norm

l[4]ly = inf {k; L M( “g”) )dmgl}.

If M(¢) satisfies the 4,-condition, then L% =L, and L% is separable.
L%, c L%, holds if and only if M,(&)<M,(&). L% is reflexive if and only
if M(¢) and N(») both satisfy the 4,-condition.

If ID Mu(x)dx< C (we say, u(x) is “bounded in the mean’), then
we have |ull<C+1. If lim,_. ||4,—u%|x=0 for u,,u, c Ly, then

lim M (U, () —u(x))dx=0

n-—co

(We call this convergence “convergence in the mean”).
1&1
Here and afterwards M (&):J p(®)dt is the given N-function
0
which satisfies the 4,-condition.

Examples. M, (§)=[é In (&]+1) (r=1), My(&)=|& (r>1) are both
N-functions satisfying the 4,-condition for all &.

3. Lemmas and main theorem.
Lemma 3.1.

ME©) _
§

A 1€1
M(@:L M@®dt

is the N-function and satisfies the d,-condition. Moreover, the N-
function N(y) complementary to M(§) satisfies the 4,-condition for all 5
and admits of the representation

N()y):fﬂl M-(b)dt.
0
For the proof, see [3; Chap. I, § 4, p. 25].
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Now define two functions ¢(?), #(£) on R' by

1€l
o(t)=tp(d), @®=L¢ma.

Then we have

Lemma 3.2. (&) is an N-function equivalent to M(&) and satisfies
the d,-condition. Further, let ¥(y) be the complementary N-function
to O(&) admitting of the representation

191
U(p) = f " p(e)ds.

Then ¥(y) also satisfies the d,-condition.

Proof. The N-function M(&) satisfies the 4,-condition if and only
if there exist constants «>1 and &,>0 such that, for £¢>¢&,

1< 20 o,
M)
(I[3; Chap. I, §4, p. 24]). Thus follows that
) M(&) <e(§) <M(af) for £>¢,,

that is, M(&) ~®(&). Hence N(y) ~¥(p) also holds. Q.E.D.

Lemma 3.3. Let p(t) and q(s) be both continuous. If w(x) e L,,
then M(u(x)) € Ly.

Proof. It is obvious that the inequality

M@k@(%g})

holds for £>>0. Hence we have
PEOVM(E) < p(8).
By integrating both sides from 0 to |£], we obtain
TMEN<D©E)  forall g,
i.e.

j T dxsjg D(u())dz. Q.E.D.

Next we shall prove Poincaré’s inequality for N-functions.

Lemma 3.4. Let M(&) be an N-function. If u is a function in
L% with compact support in 2 such that du/ox; (in the sense of distri-
bution) e L%. Then the following inequality holds:

a2
o, |l
where d is the diameter of 2.
Proof. Since L¥ L', by using Nikodym’s theorem, we have

u(xb ct xn):‘J‘w1 au (t, xz, ceey, xn)dt a.e.
21 0%y
and
]u(x)|<j s ou dx,
23 | 0%,

where z,=inf x,, x/=supx, for x=(x,, - --,%,) € Supp %, respectively.
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By Jensen’s integral inequality ([3; Chap. 1I, § 8, p. 62])
1 1 1 1 ou
M<—_ ><M(__-__I 1 dx)
x —x, k, u@)< o —x) Jar | By O, !
<t [T U (- 2,
) —x) Ja k, oz,
where k,=|0u/dx,|;; (note the last term is finite). Hence
1 1 o6u
M( )d <j M(—-— )d <1
J, 4 (grr)ae<|, m( g 5i-)ae
ie. ||uly<dk,=d|0u/ox |- Q.E.D.
Now we define the Orlicz-Sobolev space W™L, by the set of func-
tions # such that

D-u(distributional derivatives) € L, for « with |¢|<m. Then W™L,
is a Banach space with respect to the norm

llln= 25 D%l

Let WrL, be the closure of 9 in W™L, and let W-™L, be the dual
space of W=rL,.

Lemma 3.5. W™L, is separable and reflexive.

Lemma 3.6. W~-"L, consists of distributions u of the form

u= >, D4y,

where g, € Ly for a with lal<m.lal<m

For the proofs of Lemma 3.5 and Lemma 3.6 see Lions [5; Chap II.

Main theorem. Let M(&) be given an N-function satisfying the
Ad,-condition and the functions p(t) in (2.1) and q(s) in (2.2) be continu-
ous. And further let be given uy,(x) e WL, and f(x,t) € L*0, T ; L?).

Then there exists one and only one (weak) solution u(x,t) of the
equation

g_z:+ 2. (=1)"D*(M(Du) sgn Dw)=f

lal=m
satisfying
ue L=, T; WrL,)
oujot e LX0,T; LA
w(0) =u,.
4. Proof of main theorem. Put
Au= >, (=1)™D«(M(D*u) sgn D*u).

lal=m

First we show that A is monotone, hemi-continuous and bounded oper-

ator from WrL,—~W-"L,. Then last assertion follows directly from

Holder’s inequality ([8; Chap. II, p. 74, p. 80]), Lemma 3.3 and Lemma

3.5. For the first assertion, since M is even and increasing, we have
(M(8) sgn §—M(n) sgnn)(E—7) >0

for any &,7e R'. Hence A is monotone. Finally, since

|(A(u-|—e'v),w)|<[§m 9M(|D“u|+e|D“v|)lD“w|dx
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< 2. | @A(Dul+|Dv)+2Dw)dz

al=m

< Z |, @(Dul+| D)+ oD w)dx

al=m
for any u,v and w in WL, and any 0<e<1, A is hemicontinuous by
Lebesgue’s convergence theorem.
We shall employ the Galerkin’s method. Let {w,},.,, ... be a com-
plete system of functions in W7L,. We look for approximate solutions
u,(x, t) in the form

u,(t):é 95,W;
where the unknown functions g;, are to be determined by the follow-

ing ordinary differential system
4.1 (@, w,)+|4]‘; (M(D=u,) sgn D*u,, D*w ) =(f®),w,), 1<j<y
with initial condition
U(0) =, =3 a0,
=
where
U, — Uy in WrL, strongly as v—oo.
Then we obtain the following a priori estimates:
4.2 ”uv”Lw<o,T;W'.,"L¢><C
4.3) 1% M za0,7: 20 < C.

In fact, multiplying (4.1) by ¢/, and summing up the resulting equations
from j=1 to v imply

IOt 5| GO0y dn=(7®), wict)

<-;— llf(t)llia+% ) [
Integrating in ¢ both sides we have
2 Wl + 3 [ MODu@dz<C.

Thus a priori estimates (4.2), (4.3) are obtained in virtue of Lemmas 3.2
and 3.4.
Hence there exist a function % and a subsequence {u,} of {«,} such
that
u,—u in L=(0, T; WrL,) weakly star,
w,—u’ in L0, T; L? weakly,
u,(T)—uw(T) in WL, weakly
and
Au,—y in L=(0,T; W-™L,) weakly star.
Hemi-continuity and monotonicity of A yield y=Awu ([6; Chap. II,
p. 160]) which implies the function » is a desired solution.
The uniqueness part follows from the monotonycity of A, as usual.
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