92. On the Structure of Certain Types of Polarized Varieties. II

By Takao Fujita

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1974)

This is a continuation of our previous notes [1], [2]. We employ the same notation and the same terminology as in them. We shall outline our main results. Details will be published elsewhere.

1. Polarized varieties with $\Delta = 0$. Given a pair (x, y) of points on a projective space P, we denote by $l_{x,y}$ the line which passes through the points x and y. Given a pair (X, Y) of subsets of P, we denote by X^*Y the subset $(\bigcup_{(x,y)\in X\times Y, x\neq y^{i}x,y})\cup X\cup Y$ of P.

Theorem 1. i) Let (V, F) be a polarized variety with $\Delta(V, F) = 0$. Then V is normal and F is very ample.

ii) Let $\rho: V \to \mathbf{P}^N$ be the embedding associated with F, and let S be the set of singular points of V. Then S is a linear subspace of \mathbf{P}^N .

iii) Let L be a linear subspace of \mathbf{P}^N such that dim $L + \dim S = N$ -1 and $L \cap S = \emptyset$. Put $V_L = V \cap L$. Then V_L is non-singular, $\Delta(V_L, F)$ =0 and $V = V_L^*S$.

Remark. By this theorem the classification of polarized varieties with $\Delta = 0$ is reduced to that of non-singular ones. Recall that an enumeration of such polarized manifolds has already been given in [1].

2. Families of polarized varieties with $\Delta = 0$. Theorem 2. Let $\pi: CV \rightarrow T$ be a proper, flat morphism from a variety V to another variety T, which may not be compact. Suppose that for every $t \in T$ the fiber $V_t = \pi^{-1}(t)$ is irreducible and reduced. Let F be a line bundle on CV which is relatively ample to π . Suppose that $\Delta(V_0, F_0) = \Delta(V_0, F_{V_0}) = 0$ for some $0 \in T$. Then $\Delta(V_t, F_t) = 0$ for any $t \in T$.

Corollary 2.1. Suppose in addition that $d(V_0, F_0) = 1$. Then $\subseteq \mathcal{V}$ is a P^n -bundle over T.

Corollary 2.2. Suppose in addition that $d(V_0, F_0)=2$. Then there exists an embedding $\mathbb{C}V \to \mathbb{P}$ where \mathbb{P} is a P^{n+1} -bundle over T. Moreover $\mathbb{C}V$ is a divisor on \mathbb{P} and V_t is a quadric in $P_t \cong P^{n+1}$ which is the fiber of $\mathbb{P} \to T$ over $t \in T$.

Corollary 2.3. Suppose in addition that $d(V_0, F_0) \ge 3$, that V_0 is non-singular and that the canonical bundle of V_0 is a restriction of a line bundle on $\bigcirc V$. Then every fiber V_t is non-singular. Moreover, except the case in which $\bigcirc V$ is a P^2 -bundle over T, there exists a P^1 - bundle \mathcal{W} over T such that \mathcal{V} is a P^{n-1} -bundle over \mathcal{W} .

3. Certain polarized manifolds with $\Delta = 1$, d = 1. Lemma. Let (V, F) be a polarized variety with dim V=1, d(V, F)=2, $\Delta(V, F)=1$. Then $Bs |F|=\emptyset$ and the morphism associated with |F| makes V a two-sheeted branched covering of P^1 .

Let F be a line bundle on a manifold M and let B be a non-singular member of |kF| where k is an integer, $k \ge 2$. Then there exists a submanifold N of F such that the bundle mapping $F \rightarrow M$ makes N a ksheeted branched covering of M with branch locus B. Such a manifold N is determined uniquely by the quadruple (M, k, B, F) up to isomorphism. (See [4].) We denote N by $R_{k,B,F}(M)$. We write $R_B(M)$ for $R_{2,B,F}(M)$ if there is no danger of confusion.

Theorem 3. i) Let (M, F) be a polarized manifold with $\Delta(M, F) = 1$, d(M, F) = 1, dim M = n and $g(M, F) \leq 2$. Then there exists a vector bundle E on P^{n-1} of rank 2 and a non-singular divisor B on $P = P(E^*)$ such that $Q_p(M) = R_B(P)$ where p is the base point of |F| (see [1], Proposition F).

ii) Let H and I denote the hyperplane bundle and trivial bundle of \mathbf{P}^{n-1} respectively and put $L = -L(E^*)$.

a) Suppose that g(M, F) = 1, then $E = I \oplus 2H$, $B = B_1 + B_2$, $B_1 \in |L-2H|$, $B_2 \in |3L|$.

b) When g(M, F) = 2, one of the following cases occurs:

b-0) $E = I \oplus I$, B is connected and $B \in |6L+2H|$,

b-1) $E = I \oplus H$, B is connected and $B \in |6L|$,

b-2) $E = I \oplus 2H, B = B_1 + B_2, B_1 \in |L - 2H|, B_2 \in |5L|.$

When dim $M \ge 4$, b-2) is the case.

Corollary. $H^1(M, \mathcal{O}_M) = 0$ if dim $M \ge 2$.

Remark. A polarized surface of the above type b) is a rational surface or a blowing-up of a K3-surface or a surface of general type according as it is of type b-0), b-1) or b-2).

References

- T. Fujita: On the structure of certain types of polarized varieties. Proc. Japan Acad., 49, 800-802 (1973).
- [2] —: On some new invariants of polarized manifolds. Proc. Japan Acad., 50, 173-174 (1974).
- [3] ——: On polarized manifolds with Δ -genera two (to appear).
- [4] J. Wavrik: Deformations of branched coverings of complex manifolds. Amer. J. Math., 90, 926-960 (1968).