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140. Double Centralizers of Torsionless Modules*
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Department of Mathematics, Yamagata University

(Comm. by Kinjir5 KuNuI, M. ft. A., Oct. 12, 1974)

In this note, we make the assumption that a ring has an identity
element and modules are unital. For a left R-module M where R is
a ring, D=End (.M) is an R-endomorphism ring of M operating on
the side opposite to the scalars. Then M is considered as an (R, D)-
bimodule. A D-endomorphism ring Q=End (M) of M is called a
double centralizer of M.

Definition. Let M and U be left R-modules, RM is said to be
U-torsionless in case for each non-zero element m of M, there exists
an R-homomorphism of zM into U such that (re)C=/= 0.

We say that a left R-module M is torsionless if M is R-torsion-
less and N is faithful if R is N-torsionless. Let Q be a double
centralizer of a faithful left R-module M, then there exists a canonical
ring monomorphism of R into Q, written as RQ. A faithful left R-
module zM is said to have the double centralizer property if R-Q,
where Q is a double centralizer of

Definition. A ring R is left QF-1 if every faithful left R-module
has the double centralizer property.

QF-1 rings were first described by R. M. Thrall (1948 [4]) and have
been examined by many authors. It was proved that the double
centralizer of a faithful torsionless left R-module is a rational exten-
sion of R. Furthermore the double centralizer of a dominant left
R-module is a maximal right quotient ring of R (see T. Kato [1] and
H. Tachikawa [3]). In the section 1, the next theorem is proved.

Theorem. Let R be a ring with minimum condition and U be the
intersection of all left faithful two-sided ideals of R. Then U is also
a left faithful two-sided ideal of R and the double centralizer of U is
a maximal right quotient ring of R.

In the section 2, we shall prove that for a given faithful left R-
module M, M has the double centralizer property if and only if Ke
has the double centralizer property, where

(K----
Hom(M,R) End(M) 0 1
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1o We shall first prove the next theorem which is similar to
K. Morita’s result [2, Theorem 1.1.].

Theorem 1. Let RM and RU be left R-modules. If the following
conditions are satisfied"

(1) There exists the following R-exact sequence"

M-aU-O,
(2) If m=0, m e aM, e Hom (M, U), then (qm)=0

for any q e Q,
(3) For each non-zero element q of Q, there exist m e nM and

e Homz (M, nU) such that (qm):/:0,
then we have QQ where Q and Q are double centralizers of M and
nU respectively.

ProoL For any q e Q, we define q as q(, mii)-, (qmt). Then
the mapping" q-q is well-defined by (2). An element q is contained
in Q since
q(( m)d)--q( md)-, (qmi)id=( (qm))d--(q(, m))d

or any d e End (U). And this mapping" q- is a ring mono-
morphism of Q into Q by (3).

Lemma 2. If U is zM-torsionless, then the condition (2) of
Theorem 1 is satisfied.

Proof (c.. T. Kato [1]).
e Hom (M, U), then there exists d e Hom (U, M) such that
( (qm))d=/=O since U is M-torsionless.

( (qm))d= (qm)d-- q(md)
by q e Q Hom (M, M) and d e D=Hom (zM, M). Further

}, q(mid) q( (m)d) q((, mi)d) O.
Then we have m=/=0.

Since the condition (3) o Theorem 1 is satisfied if M is U-
torsionless, we have the ollowing.

Lemma :. Let M and U be left R-modules. If the following
conditions are satisfied"

(1) There exists the following R-exact sequence"

MRU--O,
(2) U is zM-torsionless,
(3) M is RU-torsionless,

then we have QQ where Q and Q are double centralizers of aM and
U respectively.

Lemma 4. Let A and B be left faithful two-sided ideals of a ring
R. Then A B is also a left faithful two-sided ideal of R.

Proof. Clearly AB--{ ab a e A, b e B} is a two-sided ideal
contained in a two-sided ideal A B. For each non-zero element r o
R, there exists a e A such that raO since A is left aithful. Similarly
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for ra:/=0, there exists b e B such that (ra)bO since B is left faithful.
By r(ab)=/=O, ab e AB, AB is left faithful. Hence A(B is also left
faithful.

Definition. For a left R-module M, the sum of all R-homo-
morphic images of aM into aR is called a trace ideal of aM, written as
Tr (M).

Theorem 5. Let R be a ring with minimum condition and U be
the intersection of all left faithful two-sided ideals of R. Then U is
also a left faithful two-sided ideal of R and the double centralizer of
nU is a maximal right quotient ring of R.

Proof. If R is a ring with minimum condition, then U is a left
faithful two-sided ideal of R because of Lemma 4. For any faithful
torsionless left R-module aM, let Tr (M) be a trace ideal of M and
Q, Q’ be double centralizers of M, Tr (M) respectively. By Lemma
3, we have QQ’. Since Tr (M)U is also a left faithful two-sided
ideal contained in U, then Tr (M)U= U. In this case, Q’ is contained
in the double centralizer Q of U by Lemma 3. Thus we have QQ.
This ring Q is a maximal right quotient ring of R since R has a domi-
nant left R-module (see T. Kato [1]).

Theorem 6. Let R be a left cogenerator ring. Then the follow-
ing statements are equivalent"

(1) R is a left QF-1 ring.
(2) Every faithful left ideal of R has the double centralizer

property.
(3) Every left faithful two-sided ideal of R has the double

centralizer property.
(4) Every left faithful trace ideal of R has the double centralizer

property.
Proof. (1) (2) (3) (4) is clear. (4)(1). For any faithful

left R-module M, let Tr (M) be a trace ideal of M and Q, Q be
double centralizers of M, aTr (M) respectively. By Lemma 3, we
have QQ and (4) implies Q-R.

2. In this section, let M be a faithful left R-module, D
=Enda (M) and Q=End. (M). It is easily shown that the canonical
mapping

" Homz (M, R)Homz (M, D)
is a (D, R)-monomorphism and the canonical mapping

p" Hom (M,D)Hom (M, Q)
is a (D, Q)-isomorphism. We define a ring K as

K=
Hom(M,R) D

=((; m) r e R’ m e M’ e Hm (M’ R)’ d e D}
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In this ring K, for m e M and e Hom (M, R), let me e R be as usual
but Cm means (v)m e D.

Lemma 7. Let M, D, Q and K be as above. If M is faithful,
then Ke is faithful, where

e=(00)eK.0 1
LemmaS. Le M, D, Q, K and e e K be as above. Then the

double centralizer of Ke is a ring

Hom (M, D) D
Finally we describe our main theorem which is thought to be use-

ful in solving later problems.
Theorem9. Let RM, D, Q, K and e e K be as above. Then M

has the double centralizer property if and only if Ke has the double
centralizer property.
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