132. On Sylow Subgroups and an Extension of Groups

By Zensiro GOSEKI Gunma University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

Let A and B be groups. If there are homomorphisms f and gsuch that a sequence $\xrightarrow{f} A \xrightarrow{g} B \xrightarrow{f} A \xrightarrow{g} B \xrightarrow{f}$ is exact, then we denote this collection by (A, B; f, g) and we say (A, B; f, g) to be well defined. Let (A, B: f, g) and $(C, D: f_1, g_1)$ be well defined. If C and D are subgroups of A and B, respectively, and if $f=f_1$ on C and $g=g_1$ on D, then we call $(C, D; f_1, g_1)$ a subgroup of (A, B; f, g) and in this case, we denote $(C, D; f_1, g_1)$ by (C, D; f, g). Furthermore, we call (C, D; f, g) a normal subgroup of (A, B; f, g) if $C \triangleleft A$ and $D \triangleleft B$, and a Sylow subgroup of (A, B; f, g) if C is a Sylow subgroup of A (in this case D is also a Sylow subgroup of B). We shall discuss the existence of such Sylow subgroups (C, D: f, g) of (A, B: f, g). It is easy to see that there are homomorphisms f and g such that (A, B: f, g) is well defined iff there are groups M, N and homomorphisms $\alpha_1, \alpha_2, \beta_1, \beta_2$ such that sequences $1 \to M \xrightarrow{\alpha_1} A \xrightarrow{\alpha_2} N \to 1$ and $1 \to N \xrightarrow{\beta_1} B \xrightarrow{\beta_2} M \to 1$ are exact. This shows that the results given in this note are related to an extension of groups.

Lemma 1. Let (A, B; f, g) be well defined. Let M and N be subgroups of A and B, respectively. Then (M, N; f, g) is well defined iff $f(M) = f(A) \cap N$ and $g(N) = g(B) \cap M$.

Proof. Since (A, B: f, g) is well defined, $A/g(B) \cong f(A)$ and so $M/M \cap g(B) \cong Mg(B)/g(B) \cong f(M)$. Assume that (M, N: f, g) is well defined. Then $M/g(N) \cong f(M)$. Hence $M/g(N) \cong M/M \cap g(B)$ where this isomorphism is given by $xg(N) \rightarrow x(M \cap g(B))$ for all $x \in M$. Hence $M \cap g(B) = g(N)$. Similarly $N \cap f(A) = f(M)$. Conversely, let $f(M) = N \cap f(A)$ and $g(N) = M \cap g(B)$. Then $M/g(N) = M/M \cap g(B) \cong Mg(B)/g(B) \cong f(M)$, i.e., $M/g(N) \cong f(M)$ where this isomorphism is given by $xg(N) \rightarrow f(x)$ for all $x \in M$. Similarly $N/f(M) \cong g(N)$ where this isomorphism is given by $yf(M) \rightarrow g(y)$ for all $y \in N$. Hence (M, N: f, g) is well defined.

Lemma 2. Let (A, B; f, g) be well defined and let (M, N; f, g) be a normal subgroup of (A, B; f, g). Then $(A/M, B/N; \overline{f}, \overline{g})$ is well defined, where \overline{f} and \overline{g} are homomorphisms which are naturally induced by f and g, respectively.

Proof. By Lemma 1, $f(A) \cap N = f(M)$. Hence $f^{-1}(N) = f^{-1}(f(A))$

 $(N) = f^{-1}(f(M)) = Mg(B).$ Similarly $g^{-1}(M) = Nf(A).$ Hence a sequence $\xrightarrow{\overline{g}} A/M \xrightarrow{\overline{f}} B/N \xrightarrow{\overline{g}} A/M \xrightarrow{\overline{f}} B/N \xrightarrow{\overline{g}}$ is exact.

Lemma 3. Let M and N be subgroups of groups A and B, respectively, and let $P \triangleleft M$ and $Q \triangleleft N$. If (A, B: f, g), $(M/P, N/Q: \overline{f}, \overline{g})$ and (P, Q: f, g) are well defined where \overline{f} and \overline{g} are homomorphisms which are naturally induced by f and g, respectively, then (M, N: f, g) is well defined.

Proof. Since (P, Q: f, g) is well defined, $f(A) \cap Q = f(P)$ and $g(B) \cap P = g(Q)$. Hence $f(M) \cap Q = f(M) \cap f(A) \cap Q = f(M) \cap f(P) = f(P)$. Similarly $g(N) \cap P = g(Q)$. Since $(M/P, N/Q: \overline{f}, \overline{g})$ is well defined, $N/Q/f(M)Q/Q \cong g(N)P/P$. Hence $N/f(M)Q \cong N/Q/f(M)Q/Q \cong g(N)P/P \cong g(N)/g(Q)$, i.e., $N/f(M)Q \cong g(N)/g(Q)$ and hence f(M)Q is a kernel of a homomorphism $N \rightarrow g(N)/g(Q)$ given by $x \rightarrow g(x)g(Q)$ for all $x \in N$. On the other hand, for any $x \in N$, $g(x) \in g(Q)$ iff $x \in (N \cap f(A))Q \equiv (N \cap f(A))Q$. Hence $f(M)/f(P) = f(M)/f(M) \cap Q \cong f(M)Q/Q = (N \cap f(A))Q/Q \cong N \cap f(A)/N \cap f(A) \cap Q = N \cap f(A)/f(P)$, i.e., $f(M)/f(P) \cong N \cap f(A)/f(P)$ where this isomorphism is given by $f(x)f(P) \rightarrow f(x)f(P)$ for all $x \in M$. Thus $f(M) = N \cap f(A)$. Similarly $g(N) = M \cap g(B)$. By Lemma 1, (M, N: f, g) is well defined.

In the rest of this note we consider only the finite groups. For a prime number p, a following result is well known (see [2, Lemma 2.1]).

Lemma 4. Let $N \triangleleft A$ and S_p a Sylow p-subgroup of A. Then $N \cap S_p$ and NS_p/N are the Sylow p-subgroups of N and A/N, respectively.

Lemma 5. Let (A, B; f, g) be well defined. Let S_p be a Sylow psubgroup of A and T a subgroup of B. Then $(S_p, T; f, g)$ is well defined iff T is a Sylow p-subgroup of $g^{-1}(S_p)$ and $f(S_p) \subseteq T$. In this case, T is a Sylow p-subgroup of B.

Proof. Since (A, B: f, g) is well defined, |A| = |B|. Assume that $(S_p, T: f, g)$ is well defined. Then $|S_p| = |T|$. Hence T is a Sylow p-subgroup of B and so of $g^{-1}(S_p)$. Clearly $f(S_p) \subseteq T$. Conversely, let $f(S_p) \subseteq T$ and let T be a Sylow p-subgroup of $g^{-1}(S_p)$. By Lemma 4, $S_pg(B)/g(B)$ is a Sylow p-subgroup of A/g(B). On the other hand, $A/g(B) \cong f(A)$ and this induces an isomorphism $S_pg(B)/g(B) \cong f(S_p)$. Hence $f(S_p)$ is a Sylow p-subgroup of f(A). Furthermore, since the isomorphism $B/f(A) \cong g(B)$ is given by $bf(A) \rightarrow g(b)$ for all $b \in B$, $g^{-1}(S_p)/f(A) \cong g(B) \cap S_p$. Therefore, if $|g(B) \cap S_p| = p^n$ and $|f(S_p)| = p^m$, then $|g^{-1}(S_p)| = p^{n+m}q$ where q is an integer such that $p \nmid q$. Hence $|T| = p^{n+m}$. Thus $p^n = |T/f(S_p)| = |g(B) \cap S_p| = |g^{-1}(S_p)/f(A)|$. Since $T \cap f(A)$ and $f(S_p)$ are Sylow p-subgroups of f(A) and since $f(S_p) \subseteq T$

into $g^{-1}(S_p)/f(A)$ and so embedded into $g(B) \cap S_p$. Since those have the same order, $T/f(S_p) \cong g(B) \cap S_p$ and this isomorphism is given by $tf(S_p) \rightarrow g(t)$ for all $t \in T$. Consequently $g(T) = g(B) \cap S_p$. Therefore, by Lemma 1, $(S_p, T: f, g)$ is well defined.

By the above result, if (A, B: f, g) is well defined and if S_p is a Sylow *p*-subgroup of A then there is a Sylow *p*-subgroup T_p of B such that $(S_p, T_p: f, g)$ is well defined. We denote by $n_p(A)$ and $n_p(A, B: f, g)$ the number of the Sylow *p*-subgroups of A and (A, B: f, g), respectively.

Theorem 1. Let (A, B; f, g) be well defined. Then:

(1) If S_p is a Sylow p-subgroup of A, then the number t of Sylow p-subgroups T_p of B such that $(S_p, T_p; f, g)$ is well defined is independent of a choice of S_p and $t \equiv 1 \mod p$.

(2) $n_p(A, B: f, g) \equiv 1 \mod p$.

(3) $n_p(A, B; f, g) = n_p(A)n_p(B)/n_p(f(A))n_p(g(B)).$

Proof. (1) By Lemma 5, t is the number of Sylow p-subgroups of $g^{-1}(S_p)$ which contain $f(S_p)$. Hence $t \equiv 1 \mod p$ (see [1, p. 152]). We shall prove that t is independent of a choice of S_p . Let T_p be a subgroup of B such that $(S_p, T_p; f, g)$ is well defined. Then $g(B) \cap S_p$ $=g(T_p)$. Hence $g^{-1}(S_p)=T_pf(A)$. Now let \mathfrak{F} be a set of Sylow p-subgroups of $T_p f(A)$ and \circledast a set of Sylow p-subgroups of f(A). Let $\mu: \mathfrak{F} \to \mathfrak{G}$ be a map defined by $\mu(T) = T \cap f(A)$ for all $T \in \mathfrak{F}$. Then μ is Let $J \in \mathfrak{G}$. There is $a \in A$ such that $J = f(a)^{-1}(T_p)$ well defined. Since $g(f(a)^{-1}T_pf(a)) = g(T_p) \subseteq S_p$, $f(a)^{-1}T_pf(a) \in \mathfrak{F}$ and $\cap f(A)$ f(a). $\mu(f(a)^{-1}T_pf(a)) = J$. Consequently μ is surjective. Next let $J_1, J_2 \in \mathfrak{G}$. Then there is $a \in A$ such that $f(a)^{-1}J_1f(a) = J_2$. Next let $\delta: \mu^{-1}(J_1)$ $\rightarrow \mu^{-1}(J_2)$ be a map defined by $\delta(T) = f(a)^{-1}Tf(a)$ for all $T \in \mu^{-1}(J_1)$. Then δ is well defined and bijective. On the other hand, $f(S_p)$ is a Sylow *p*-subgroup of f(A) and so $f(S_p) \in \mathfrak{G}$. Moreover, $\mu^{-1}(f(S_p))$ is a set of Sylow *p*-subgroups of $T_p f(A)$ which contain $f(S_p)$. Hence tGenerally $n_p(Tf(A)) = n_p(T'f(A))$ for any $= n_n(T_n f(A))/n_n(f(A)).$ Sylow p-subgroups T and T' of B because Tf(A) and T'f(A) are isomorphic. Hence t is independent of a choice of a Sylow p-subgroup S_p of A.

(2) By (1), $n_p(A, B; f, g) = n_p(A)t$. Since $n_p(A) \equiv t \equiv 1 \mod p$, (2) holds.

(3) From the proof of (1) stated above,

 $n_p(A, B; f, g) = n_p(A)n_p(T_pf(A))/n_p(f(A))$

where $(S_p, T_p; f, g)$ is well defined and a Sylow *p*-subgroup of (A, B; f, g). By [2, Theorem 2.1],

$$\begin{split} n_p(A) &= n_p(g(B)) n_p(f(A)) n_p(N_{S_pg(B)}(g(T_p)) / g(T_p)), \\ n_p(B) &= n_p(f(A)) n_p(g(B)) n_p(N_{T_pf(A)}(f(S_p)) / f(S_p)) \end{split}$$

and

Sylow Subgroups

 $n_p(T_pf(A))/n_p(f(A)) = n_p(N_{T_pf(A)}(f(S_p))/f(S_p)).$

Hence $n_p(A, B: f, g) = n_p(A)n_p(B)/n_p(f(A))n_p(g(B)).$

Theorem 2. Let (A, B: f, g) be well defined and let (P, Q: f, g)be a subgroup of (A, B: f, g). If P is a p-subgroup of A (hence Q is also a p-subgroup of B), then there is a Sylow p-subgroup $(S_p, T_p: f, g)$ of (A, B: f, g) such that (P, Q: f, g) is a subgroup of $(S_p, T_p: f, g)$.

Proof. Let T be a Sylow p-subgroup of the group f(A)Q such that $Q \subseteq T$. Let $M = f(A) \cap T$. By Lemma 4, M is a Sylow p-subgroup of f(A). If S is a Sylow p-subgroup of A, then f(S) is a Sylow p-subgroup of f(A) and so there is $a \in A$ such that $f(a)^{-1}f(S)f(a)=M$. Hence $a^{-1}Sa \subseteq f^{-1}(M)$. This shows that any Sylow p-subgroup of $f^{-1}(T)$ is a Sylow p-subgroup of A. Let S_p be a Sylow p-subgroup of $f^{-1}(T)$ such that $P \subseteq S_p$. Then S_p is a Sylow p-subgroup of A. Since $g(T) \subseteq g(f(A)Q) = g(Q) \subseteq P \subseteq S_p$, $T \subseteq g^{-1}(S_p)$. Now let T_p be a Sylow p-subgroup of $g^{-1}(S_p) \subseteq T$. Hence, by Lemma 5, $(S_p, T_p; f, g)$ is well defined. Furthermore $Q \subseteq T_p$ and $P \subseteq S_p$. This completes our proof.

Theorem 3. Let (A, B: f, g) be well defined, let (K, L: f, g) be a normal subgroup of (A, B: f, g) and $(S_p, T_p: f, g)$ a Sylow p-subgroup of (A, B: f, g). Then $(K \cap S_p, L \cap T_p; f, g)$, $(S_pK/K, T_pL/L: \overline{f}, \overline{g})$ and $(S_pK, T_pL: f, g)$ are well defined where \overline{f} and \overline{g} are homomorphisms which are naturally induced by f and g, respectively.

Proof. $K \cap S_p$ is a Sylow *p*-subgroup of *K*. Since $L \cap T_p$ is a Sylow *p*-subgroup of $L, L \cap T_p$ is also a Sylow *p*-subgroup of $g^{-1}(K \cap S_p)$ $\cap L$. Furthermore $f(K \cap S_p) \subseteq L \cap T_p$. Hence, by Lemma 5, $(K \cap S_p, L \cap T_p; f, g)$ is well defined. By Lemma 4, S_pK/K and T_pL/L are Sylow *p*-subgroups of A/K and B/L, respectively. Furthermore, by Lemma 2, $(A/K, B/L; \overline{f}, \overline{g})$ is well defined and $\overline{f}(S_pK/K) \subseteq T_pL/L$ $\subseteq \overline{g}^{-1}(S_pK/K)$. Hence, by Lemma 5, $(S_pK/K, T_pL/L; \overline{f}, \overline{g})$ is well defined. Therefore, by Lemma 3, $(S_pK, T_pL; f, g)$ is well defined.

References

- W. Burnside: Theory of Groups of Finite Order (2nd ed.). Dover, New York. MR 16, 1086 (1955).
- [2] M. Hall: On the number of Sylow subgroups in a finite group. J. Algebra, 7, 363-371 (1967).

No. 8]