129. Fundamental Solution of Partial Differential Operators of Schrödinger's Type. I

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Comm. by Kôsaku Yosida, m. J. A., Oct. 12, 1974)

§ 1. Preliminaries. Let $d s^{2}=\sum_{i j}^{n} g_{i j}(x) d x_{i} d x_{j}$ be a Riemannian metric on R^{n}. The Laplacian $\Delta=\frac{1}{\sqrt{g}} \sum_{i j} \frac{\partial}{\partial x_{i}}\left(\sqrt{g} g^{i j} \frac{\partial}{\partial x_{j}}\right)$ associated with this metric naturally defines a self-adjoint operator in $L^{2}\left(R^{n}\right)$ with respect to the measure $\sqrt{g} d x$. This generates a one parameter group of unitary operators $U_{t}=\exp \frac{1}{2} i \nu^{-1} \Delta t, \nu>0, t \in R$. For any f in the domain of Δ, the function $u=U_{t} f$ satisfies the following equations

$$
\begin{equation*}
\left(i \nu \frac{\partial}{\partial t}+\frac{1}{2} \Delta\right) u=0 \quad \text { for any } t \in R, \tag{1}
\end{equation*}
$$

$$
s-\lim _{t \rightarrow 0} U_{t} f=f
$$

The aim of this note is to construct, under assumptions in §§ 2 and 3 , the distribution kernel $U(t, x, y)$ of the operator U_{t}. Our proof follows Feynman's idea [2]. Combining technique of CalderònVaillancourt with method of oscillatory integrals [4], we can give rigorous mathematical reasoning to Feynman's idea.
§ 2. Parametrix. Let us denote by $q=q(t, y, \eta)$ and $p=p(t, y, \eta)$ the solution of the Hamiltonian equations

$$
\begin{equation*}
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q} \tag{3}
\end{equation*}
$$

satisfying initial conditions at $t=0 ; q=y$ and $p=\eta$, where H is the Hamiltonian function $H(q, p)=\frac{1}{2} \sum_{i j} g^{i j}(q) p_{i} p_{j}$. Since H is a homogeneous function of p 's, we have

$$
\begin{equation*}
q(t, y, \eta)=q(1, y, t \eta) \quad \text { and } \quad t p(t, y, \eta)=p(1, y, t \eta) \tag{4}
\end{equation*}
$$

Our first assumption is that
the canonical transformation $\chi_{t}:\left(x^{\circ}, \eta\right) \mapsto(x, \xi)=\left(q\left(t, x^{\circ}, \eta\right)\right.$, $p\left(t, x^{\circ}, \eta\right)$) induces global diffeomorphism of the base space R^{n}.
The generating function of this canonical transformation is

$$
\begin{equation*}
S_{0}(t, x, \eta)=\int_{0}^{t} L(q, \dot{q}) d s+x^{\circ} \cdot \eta \tag{5}
\end{equation*}
$$

where $L(q, \dot{q})$ is Lagrangean corresponding to Hamiltonian H and the
integral should be taken along the classical orbit from x°. x° $=x^{\circ}(t, x, \eta)$ is the unique solution of the equation $x=q\left(t, x^{\circ}, \eta\right)$. We set
(6) $\quad S(t, x, \xi, y)=S_{0}(t, x, \xi)-\xi \cdot y$.
Our parametrix is of the form
(7)

$$
E_{N}(t, x, \xi, y)=\exp i \nu S(t, x, \xi, y) e(t, x, \xi)
$$

with

$$
\begin{equation*}
e(t, x, \xi)=\sum_{r=0}^{N}(i \nu)^{-r} e_{r}(t, x, \xi), \tag{8}
\end{equation*}
$$

where N will be fixed later. Amplitude functions $e_{r}(t, x, \xi)$ are determined inductively by

$$
\begin{equation*}
\frac{D}{D t} e_{r+1}+\frac{1}{2} \Delta S e_{r+1}+\frac{1}{2} \Delta e_{r}=0, \quad e_{-1}=0 \tag{9}
\end{equation*}
$$

with initial conditions $e_{0}(0, x, \xi)=1$ and $e_{r}(0, x, \xi)=0$. Here $\frac{D}{D t}=\frac{\partial}{\partial t}$ $+\sum_{j=1}^{n} \dot{q}_{j} \frac{\partial}{\partial q_{j}}$. Thus we have

$$
\begin{gather*}
e_{0}(t, x, \xi)=\left(g(x) / g\left(x^{\circ}(t, x, \xi)\right)\right)^{1 / 4} \quad \text { and } \tag{10}\\
e_{r}(t, x, \xi)=-e_{0}(t, x, \xi) \int_{0}^{t} \frac{1}{2} \Delta_{z} e_{r-1}(s, z(s), \xi) / e_{0}(s, z(s), \xi) d s
\end{gather*}
$$

where $z(s)=q\left(s, x^{\circ}(t, x, \xi), \xi\right)$. Our parametrix satisfies

$$
\begin{equation*}
\left(\nu i \frac{\partial}{\partial t}+\frac{1}{2} \Delta\right) E_{N}(t, x, \xi, y)=(\nu i)^{-N} \frac{1}{2} \Delta e_{N}(t, x, \xi) \exp i \nu S . \tag{11}
\end{equation*}
$$

Later we use homogeneity property ;

$$
\begin{equation*}
\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial \xi}\right)^{\beta} e_{j}(t, x, \xi)=t^{j+|\beta|}\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial \xi}\right)^{\beta} e_{j}(1, x, t \xi) . \tag{12}
\end{equation*}
$$

§ 3. Assumptions. We assume the following assumptions (A-II) $\sim(\mathrm{A}-\mathrm{VI})$ as well as (A-I) in the previous section. (A-II) there exists a constant $C_{0}>0$ such that we have $C_{0} \leqq\left(\sum_{i j} g_{i j}(x) \xi_{i} \xi_{j}\right) /\left(\sum_{i j} g_{i j}(y) \xi_{i} \xi_{j}\right)$ $\leqq C_{0}^{-1}$ for any x, y in $R^{n}, \xi=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) \in R^{n}$. (A-III) for any multiindex α, there exists a constant $C_{\alpha}>0$ such that we have $\left|\left(\frac{\partial}{\partial x}\right)^{\alpha} g_{i j}(x)\right|$ $\leqq C_{\alpha}$, for any $x \in R^{n}$. (A-IV) there exists a constant $C_{2}>0$ such that we have $\left|\operatorname{grad}_{\xi}\left(S_{0}(t, x, \xi)-S_{0}(t, z, \xi)\right)\right| \geqq C_{2}|x-z|$ and $\mid \operatorname{grad}_{y}\left(S_{0}(t, y, \xi)\right.$ $\left.-S_{0}(t, y, \eta)\right)\left|\geqq C_{2}\right| \xi-\eta \mid$ for any $t \in[0, T], x, z, y \in R^{n}$ and ξ, η in R^{n}. (A-V) for any multi-index $\alpha,|\alpha| \geqq 2$, there exists a constant $C>0$ such that we have $\left|\left(\frac{\partial}{\partial \xi}\right)^{\alpha}\left(S_{0}(t, x, \xi)-S_{0}(t, z, \xi)\right)\right| \leqq C|x-z|$ and $\left\lvert\,\left(\frac{\partial}{\partial y}\right)^{\alpha}\left(S_{0}(t, y, \xi)\right.\right.$ $\left.-S_{0}(t, y, \eta)\right)|\leqq C| \xi-\eta \mid$ for any t in $[0, T]$ and $x, z, y \in R^{n}$ and $\xi, \eta \in R^{n}$. (A-VI) for any multi-indices α, β, there exists a constant $C>0$ such
that we have $\left|\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial \xi}\right)^{\beta} e_{0}(t, x, \xi)\right| \leqq C$ for any $t \in[0, T], x \in R^{n}, \xi \in R^{n}$.
Remark. 1) These assumptions may be redundant. 2) Assumption (A-I) is very restrictive. We can use Maslov's theory of canonical operators and replace (A-I) with less restrictive assumption.
§ 4. Results. We define two integral transformations;

$$
\begin{align*}
& \quad E_{N}(t) f(x)=(\nu / 2 \pi)^{n} \iint_{R^{2 n}} E_{N}(t, x, \xi, y) f(y) d y d \xi, \tag{13}\\
& F_{N}(t) f(x) \\
& =(i \nu)^{-N}(\nu / 2 \pi)^{n} \iint_{R^{2 n}} \frac{1}{2} \Delta e_{N}(t, x, \xi) \exp i \nu S(t, x, \xi, y) f(y) d y d \xi . \tag{14}
\end{align*}
$$

These are well defined for functions $f(x)$ in $C_{0}^{\infty}\left(R^{n}\right)$. For the sake of brevity we shall omit writing domains of integration if there is no fear of confusion.

Theorem 1. The equality (13) naturally defines a bounded linear operator $E_{N}(t), t \in[0, T]$, in $L^{2}\left(R^{n}\right)$ with respect to the measure $\sqrt{g} d x$.

Theorem 2. We have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|E_{N}\left(\frac{T}{k}\right) E_{N}\left(\frac{T}{k}\right) \cdots E_{N}\left(\frac{T}{k}\right)-\exp i \nu^{-1} T \frac{1}{2} \Delta\right\|=0 . \tag{15}
\end{equation*}
$$

cf. R. Feyman [2].
§5. Outline of proof. From (10) and (A-VI) we see all of $e_{r}(t, x, \xi)$ enjoy the same estimate as $e_{0}(t, x, \xi)$.

Lemma. Assume that $a(x, \xi)$ is a function in $C^{\infty}\left(R^{2 n}\right)$ and that for any multi-indices α, β there exists a constant C such that we have

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial \xi}\right)^{\beta} a(x, \xi)\right| \leqq C \quad \text { for any } x \in R^{n}, \xi \in R^{n} . \tag{16}
\end{equation*}
$$

Define a mapping A as

$$
\begin{equation*}
A f(x)=\iint_{R^{2 n}} a(x, \xi) \exp i \nu S(t, x, \xi, y) f(y) d y d \xi \tag{17}
\end{equation*}
$$

for any f in $C_{0}^{\infty}\left(R^{n}\right)$. Then there exists a constant $C>0$ such that we have

$$
\begin{equation*}
\|A f\| \leqq C \nu^{-n}\|f\| \tag{18}
\end{equation*}
$$

where $\left\|\|\right.$ is the L^{2}-norm and $C>0$ is independent of t, ν and f (cf. [3]).
Theorem 1 follows from this lemma and (15). If we use this lemma for $a(x, \xi)=\Delta e_{N}(1, x, \xi)$ we have

$$
\begin{equation*}
\left\|\boldsymbol{F}_{N}(t) f\right\| \leqq C t^{N} \nu^{-N}\|f\| . \tag{19}
\end{equation*}
$$

Equality (11) implies that

$$
\begin{equation*}
E_{N}(t)=\exp i \nu \frac{1}{2} t \Delta+R_{N}(t), R_{N}(t)=\int_{0}^{t} \exp \nu i \frac{1}{2}(t-s) \Delta F_{N}(s) d s \tag{20}
\end{equation*}
$$

(19) and (20) mean that

$$
\begin{equation*}
\left\|R_{N}(t)\right\| \leqq C t^{N+1} \nu^{-N} \tag{21}
\end{equation*}
$$

We have for k products of operators $E_{N}\left(\frac{T}{k}\right) E\left(\frac{T}{k}\right) \cdots E_{N}\left(\frac{T}{k}\right)$
$=\left(\exp \nu i \frac{1}{2} \frac{T}{k} \Delta+R_{N}\left(\frac{T}{k}\right)\right) \cdots\left(\exp i \nu \frac{1}{2} \frac{T}{k} \Delta+R_{N}\left(\frac{T}{k}\right)\right) . \quad$ Since $\exp i \frac{1}{2} \nu t \Delta \quad$ is unitary, $\quad\left\|E_{N}\left(\frac{T}{k}\right) E_{N}\left(\frac{T}{k}\right) \cdots E_{N}\left(\frac{T}{k}\right)-\exp i \frac{1}{2} \nu T \Delta\right\|$ $\leqq \sum_{l=1}^{k}\binom{k}{l}\left\|R_{N}\left(\frac{T}{k}\right)\right\|^{2}=\left(1+\left\|R_{N}\left(\frac{T}{k}\right)\right\|\right)^{k}-1$. This and (21) prove Theorem 2 if we choose $N \geqq 1$.

References

[1] A. P. Calderòn and R. Vaillancourt: On the boundedness of pseudo-differential operators. Jour. Math. Soc. Japan, 23, 374-378 (1971).
[2] R. Feynman: Space-time approach to nonrelativistic quantum mechanics. Reviews of Modern Physics., 20, 367-384 (1948).
[3] D. Fujiwara: On the boundedness of integral transformations with highly oscillatory kernel (to appear).
[4] P. D. Lax: Asymptotic solutions of oscillatory initial value problems. Duke Math. Jour., 24, 627-646 (1957).
[5] V. P. Maslov: Théorie des perturbations et méthodes asymptotiques (French translation). Paris (1972).

