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165. On Approximation of Nonlinear Semi.groups

By Yoshikazu KOBAYASHI
Department of Mathematics, Waseda University

(Comm. by Kinjird KUNUGI, M. J. A., Nov. 12, 1974)

1. Let X be a real Banach space and let X, be a subset of X. By
a contraction semi-group on X,, we mean a family {T'(¥) ; £>0} of oper-
ators from X, into itself satisfying the following conditions:

(i) T@©)=I (the identity), T'(t+s)=T(t)T(s) for t,s>0;

(ii) [[T@z—T@y|<L|z—y] for t>0 and z,y € X,;

(i) lim, ., T(H)x==z for x ¢ X,.

We define the infinitesimal gemerator A, of {T(?);t>0} by Az
=lim,_,, h~'(T(h)x—x), whenever the right side exists.

Throughout this paper, we assume that X, is a closed convex set
in X and {T'(?); t>0} is a contraction semi-group on X,. Let us set
1.1 A,=h " (T(h)-I) for n>0.

Then, for each h, there is the unique contraction semi-group {T',(¢) ; t >0}
on X,, with the infinitesimal generator 4,, and it satisfies

1.2) @/dT,(x=A,T, )z for z ¢ X, and ¢>0.

(See Appendix in [10].)

Our purpose is to prove the following theorem.

Theorem. For each x ¢ X,, we have
1.3) Tr=lim,_,, T,(O)x for t>0,
and the convergence is uniform with respect to t in every bounded
interval of [0, co).

Remarks. 1) I. Miyadera showed in [9] that the convergence
(1.3) holds true for x ¢ E, where E is the set of x ¢ X, such that ||A,z|
is bounded as h—04. TUnder the similar conditions, many authors
have also treated the convergence (1.3). (See [2],[4], [8] and [10].)

2) This theorem is well known in linear theory. (See [5].)

2. For the proof of Theorem, we shall prepare several lemmas in
this section. The following is known.

Lemma 1. Let xec X, and h>0. Then for t>0,

@1 AT <||Arz,
2.2) 1 Th®z—2|| <t Ayl

Let F' be the duality map on X into X* and we set <(=,¥),
=sup{<{®, />; f e F()} for z,y e X.

Lemma 2. Let z,ze X,, h>0 and n be o positive integer. Then
we have
2.8) lz—2|F > T(mh)z—2|P+2 37, h{— Az, T(R)2— ),
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Proof. By the definition (1.1) of A,, we have T(h)x=x+4hA,x.
Therefore
IT(E—Dh)z—x|f>|| TGRz— TRz | =] T(h)z—x—hA,z|}
> TER)z—x|+2h{— Az, TER)z— ),
for each 1=1,2,...,n, where we used the inequality: |u+v|}>|u]|}
+2{v,ud,. If we add these inequalities for ¢=1,2,...,n, we have
2.8). Q.E.D.

Lemma 3. For each x e X,, we have
(2.4) lim . py-0,00 Tn(Dx=2.

Proof. We mimic M. Crandall and T. Liggett [3] as follows. (See
also T. Kato [6].) Let z,x ¢ X, and »n be a positive integer. Then by
Lemma 2, we have
@5 |z=Th(@a | 2| Tah)z—Th(a)a|?

+2>0 K= ATz, TER)z— T 1(0)x)s.
We also have
I T(nh)z—T,(a)x |}
=| 2+ nhA,2—Tha)x | =]z — Thlo)x |

+2nh{Anp2, 2— T (0)2),

and
(Ann2, 2—Th(0)2) > — || Anpz|| (|2— 2|+ || 2 — Thlo)z|).

Thus, combining these inequalities with (2.5), we have
2.6) 0> —[|Anpz| (l2—2 |+ |2 —Trl@)x|)

+@2/n) 237 <= A, TW(0)x, T(ih)z—T1(0)2)s.
By T. Kato’s lemma, we have
2.7 (d/do) ||Tth)z—Ty0)x|f=2{—A,T(0)x, TEh)z— T1(0)x)s
for a.a. ¢>>0. Therefore, integrating (2.6) with respect to ¢, we have

17
eg 0=—24mz| (t nz—ac||+j0 & —Ta(@)x]| da)
+@/n) 25 (| TCWz—T, x| —|| T@Eh)z—x ).
But
| TGR)z— T, (@) P — || T(h)z— |}
> —2||TChz—2z| |z —T.Oz|+|z—T.(Oz|
and
| T@h)z— 2| <|| TGh)z—T(Eh)z||

+IIT@hz—z||<|z—2|+ || TCR)L—2].

Therefore, (2.8) implies
lo—Th@®e(P<2(|2— ||+ 1/1) So | TRz —2]) |2 —TH ()|

+2 ]| Aul (tlz—z ]+ [ |a—Ta(o)a] do).

Let us set 2=T,,(t)x. Then by Lemma 1, it follows that ||z—«|
<t|Anx| and ||A,.2]|<L||Anrz]. Hence, by simple calculation, we
obtain the following estimate:

2.9 2 —Ta@x | < || Anp]|+ 1/7) 235 | TCR)Z—2()),
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where 7 is a universal constant. (See Remark after the Proof.)

Now we set wy(r)=sup {|T®xr—=z|; 0<t<r}. Apparently, w(r)
—0 as r—0+. Given ¢>0, pick §>0 so that w,(d)<e. Let 0<h<s/2.
Then §/2<nh<é for suitable n. Noting that 4,,2=Tnh)x—x)/nh,
by (2.9) with this n, we have

e — T @) | <72t/ 5+ 1)e.
Hence
lo— T, | <27

for 0<h<4/2 and 0<<t<4/2. Q.E.D.

Remark. Put ¢(t)=sup,.,..||#—T1(0)|. Then we have easily

PR <2 (| Anp ||+ @ /1) 2351 [ T@ER)2 — 2 |Dep(E)
+2[|Anp|| (& || Ann ||+ (D).

Noting ||z—T,()x||<e(t), we have (2.9) immediately with <2446

3. In this section, we give the proof of Theorem. For the
purpose, we also consider the family of operators, {T([¢/k]h); t>0},
for each >0, where [t/1] is the greatest integer not exceeding ¢/h.

Let x € X, and T>0. Lemma 3 shows that ||T,(t)x| is uniformly
bounded on [0,T] as h—0+. And apparently, |T([t/h]lR)x| is uni-
formly bounded on [0, T]. Thus we choose constants M, and #,>>0 so
that
3.1 | Tn@ ], | T/ IRz || <M r
for all t € [0, T] and 0<h<h,.

Lemma 4. Let 0<h<h,. Then

r {IT{t/ rI)2—T (@) | —| T8/ IR — T, (0)|*}de

+ [ QT 1w~ T@ralP—1 T/ M)z — Ta(ew Flde
<16hMz3,
for all s,t,a and Be [0, T] such that s<t and a<B.
Proof. By Lemma 2, we have
1 T(mh)x—T,(@)x | > T(nh)x— T, (@) |
+2 30 1 {— ATz, TEhx—Th(a)x)s,
for ¢ € [0, T] and integers n>m>0. Since (2.7) holds true with z=u,
integrating (3.3) with respect to ¢, we have

ozfi {I Tz — To(o)a | || T(mh)e — Th(o)a |}do
+ Ztems M| TG 2 —To(@ |~ || T@R)w — Tol@)w |},

Put n=I[¢/r] and m=[s/k]. Then, on account of (3.1), we have (3.2).
Q.E.D.

3.2)

3.3)

Now, we set ¢,(z,0): EXR—R* by
_ I T(z/ )2 —TH(@2|?, for (z,0) [0, TIX[0, T],
¢h(7’ 0) = .
0, otherwise.
Let p be a molifier such that p € D(R), p>0, supp [p]c[—1,1] and



732 Y. KOBAYASHI [Vol. 50,

[ o@ae=1.

And we set p,(§, 7)) =e%0(&/e)p(n/e) for e>0. Then we define the regulari-
zation of ¢, by

3.4 bn,(z, 0)=(0,%¢3)(z, 0) =”RXR 0.8, Den(z—&, a—n)d&dy.

By Lemma 4, we have immediately

[ 0.t — 1.5, 00
+I: {¢h,e(7’ )] _¢h,,(f, a)}dfg 16h M3

or

8t Pl 3
3.5 D ot s .
(3.5) L fs{at bn,(t, 0)+ % bt a)}drd0'<16hMT

for s,t, and Be e, T—el, s<t, @<B.

We set w(7) as in the proof of Lemma 3 and set

o =sup{|T,Bx—x|; 0<t<r, 0<h <1}
Lemma 3 means that w,()—0 as »—0+4. Also we note that
(3.6) | Tt/ r1R)x—T([s/ Rz || < Bwy(e),
1T,z —T (2] <wle),

for 0<h<e and t,s>0 such that [t —s|<e.

Lemma 5. Let ¢ and § be sufficiently small. Then we have the
following estimate :
(3. 7) ¢h(t; t) - ¢h(s: S) < 8MT(3(D0(5) + wl(e))

+T(M, r6+16RM3675),

for 0<h<min (e, hy) and s,tele, T—e—3d], s<t, where M, , is a non-
negative constant, independent of h.

Proof. We follow the argument by T. Takahashi in [11]. (See
also Ph. Bénilan [1].) For re[e, T—e—d], we set

10=[" "o { Ly e 0= Zpnrm)

0 0
+ 59512,5(1" 0') - —ao—¢h,,(1", T)}dz'da.

Taking account of (3.1), we see that all partial derivatives of ¢,, up
to the second order are uniformly bounded on [0, T] X [0, T'] with respect
to 0<h<h, Hence, for some M, ,>0 we have

[I("|<M, 0 for rele, T —e—4l,
by mean value theorem. Combing this with (3.5), we have

4 g =g, 1)+ 24, (r,7)
or o

3.8) dr

<M, 6+ 16hM%67* for r ¢ [e, T —e—4l.
Thus, integrating (3.8) with respect to , we obtain
3.9) Sn,o(ts ) — &y, (8, ) KT(M, 76+ 16hM70%)
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for s,tele, T—e—9], s<t.
On the other hand, we have

[Bn, (7', 7) — Bn (7, 7)|
S” o PE D G —E, 7 =) —u(r, )| didy

and
[pn(r—&, 7—7) — (7, 1)
<AM (| T([(r—8&)/ RIW)x—T([r | K1)z |+ | T o (r — 2 — TH(r)2|)).

Therefore, we have by (3.8)
(3.10) |60, )= G, )| <AM 1 Ban(e) + (o))
for 0<h<min (e, k) and r e [e, T—e].

Combining (3.10) with (3.9), we have (3.7). Q.E.D.

Now we can complete the proof of Theorem. Note that

onle, ) <2M (| T[] RIW) 2 — 2 ||+ || ¢ — T () |])
<2M 1 2wy(e) + w,(e)
for 0<h<min (¢, h,). Hence, taking s=¢ in (8.7), we have
Pn(t, ) <1OM 1 (Bwy(e) + wi(e)) + T (M, 70+ 16hM707%)

for 0<h<min (¢, hy) and t e [, T—e—d]. Since M, , is independent of
h and M, is independent of both & and e, this shows that || T'([t/hlh)x
—T,(@)x|| converges to 0 as h—0+ for every te (0, T) and the conver-
gence is uniform on every compact interval of (0,7). But, taking account
of (3.6) again, we see that the convergence holds true for every ¢ ¢ [0, T]
and is uniform on [0, T]. Since | T(®)x— Tt/ hl)x| < w)(h), the proof
of Theorem is completed.

Remark. After the preparation of this manuscripts, K. Kobayashi
[7] proved Theorem by using the following estimate (see Appendix in
[10]):

I Th@x—T([¢/ MRz | <(VEh+h) [|Az]  for z e X,.
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