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165. On Approximation o Nonlinear Semi.groups

By Yoshikazu KOBAYASHI
Department of Mathematics, Waseda University

(Comm. by Kinjir6 KUNUGI, M. J. A., Nov. 12, 1974)

1o Let X be a real Banach space and let X0 be a subset of X. By
a contraction semi-group on X0, we mean a family (T(t) _>0} of oper-
ators from X0 into itself satisfying the following conditions"

( i ) T(O)--I (the identity), T(+s)=T(t)T(s) for ,s>_0;
(ii) T(t)x-- T(t)y <-- Ix-- y for t_> 0 and x, y e X0
(iii) limt0+ T(t)x--x for x e X0.

We define the infinitesimal generator Ao of {T(t); t_>0} by Aox
=lim0/ h-(T(h)x--x), whenever the right side exists.

Throughout this paper, we assume that X0 is a closed convex set
in X and {T(t) t_>0} is a contraction semi-group on X0. Let us set
(1.1) A h-(T(h) --I) for h) 0.
Then, for each h, there is the unique contraction semi-group {T(t) t_>0}
on X0, with the infinitesimal generator A, and it satisfies
(1.2) (d/dt)T(t)x=AT(t)x for x e X0 and t_>0.
(See Appendix in [10].)

Our purpose is to prove the following theorem.
Theorem. For each x e Xo, we have

(1.3) T(t)x=lim.o+ T(t)x for t>_O,
and the convergence is uniform with respect to t in every bounded
interval of [0, ).

Remarks. 1) I. Miyadera showed in [9] that the convergence
(1.3) holds true for x e E, where E is the set of x e X0 such that
is bounded as h-0+. Under the similar conditions, many authors
have also treated the convergence (1.3). (See [2], [4], [8] and [10].)

2) This theorem is well known in linear theory. (See [5].)
2. For the proof of Theorem, we shall prepare several lemmas in

this section. The following is known.
Lemma 1. Let x e Xo and h O. Then for t O,

(2.1) A T(t)x -- nx(2.2) T(t)x-- x

_
t Ax

Let F be the duality map on X into X* and we set (x,
--sup {(x, f; f e F(y)} for x, y e X.

Lemma 2. Let x,z e Xo, hO and n be a positive integer. Then
we have
(2.3) Iz--xll2--IIT(nh)z--xll2+2 =1 h(--Ax, T(ih)z--x,.
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Proof. By the definition (1.1) of A, we have T(h)x=x+hAx.
Therefore

T((i-- 1)h)z-- x [l_> T(ih)z-- T(h)x [[= 11T(ih)z-- x-hAx
-[I T(ih)z-- x + 2h(--Ax, T(ih)z-- x},

for each i=1, 2, .., n, where we used the inequality"

+ 2(v, u}. If we add these inequalities for i= 1, 2, ., n, we have
(2.3). Q.E.D.

Lemma :. For each x e Xo, we have
(2.4) lim,0,0 T($)x--x.

Proof. We mimic M. Crandall and T. Liggett [3] as follows. (See
also T. Kato [6].) Let z, x e X0 and n be a positive integer. Then by
Lemma 2, we have

z-- T(a)x 112 T(nh)z-- T(a)x ]12
(2.5) + 2

__
h(--AT(a)x, T(ih)z-- T(a)x}.

We also have
T(nh)z-- T(a)x

z+nhAz- T(a)x 112 Z-- T(a)x
+2nh(Az, z-- T(a)x}

and
(Az, z-- Ta(a)x}_ -llAzll (ll z- x + x- T(a)x

Thus, combining these inequalities with (2.5), we have

(2.6) + (2/n) L- (--AaTn(a)x, T(ih)z-- Tn(a)x}s.
By T. Kato’s lemma, we have
(2.7) (d/da) ]lT(ih)z--T(a)x[[=2(--AT(a)x, T(ih)z--Ta(a)x
for a.a. a0. Therefore, integrating (2.6) with respect to a, we have

(2.8) O --2 ,,A.z (t ,,z-x,,+Io ,x--T(a)x,,

+ (l/n) E?= (] T(ih)z-- T(t)x]--[[ T(ih)z--x
But

and

T(ih)z-- T(t)x - T(ih)z-- x
>_ 2 T(ih)z-- x Ix T(t)x + x-- T(t)x

T(ih)z-- x -- T(ih)z-- T(ih)x

+ T(ih)x-- x <--II z-- x + T(ih)x-- x
Therefore, (2.8) implies

+2,,Az (t z--x,, +.l’o x- T(a)x da).
Let us set z--Tnn(t)x. Then by Lemma 1, it follows that
t I[Ax][ and Az g Ax []. Hence, by simple calculation, we
obtain the ollowing estimate"
(2.9) ]]x--T(t)xl]gv(t ][Annxi]+(1/n) =x ]]T(ih)x-x),
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where ] is a universal constant. (See Remark after the Proof.)
Now we set (oo(r)---sup{llT(t)x--xll; O<_t_r}. Apparently, 0(r)

0 as r--.0+. Given 0, pick/0 so that 0(/)e. Let Oh_/2.
Then /2<_nh_ for suitable n. Noting that Ax=(T(nh)x--x)/nh,
by (2.9) with this n, we have

IIx-- T(t)xll<_(2t// 1).
Hence

for Oh<_/2 and 0t<_6/2. Q.E.D.
Remark. Put (t)=sup0t IIx--T(a)ll. Then we have easily

(t)_<2(t IIAxll+ (l/n) ,L- T(ih)x--xll)(t)
+ 2 IInxll (t IIAxll+ t(t)).

Noting IIx--T(t)xll<_(t), we have (2.9)immediately with ]_<2+ /-6-.
:. In this section, we give the proof o Theorem. For the

purpose, we also consider the amily o operators, {T([t/h]h); t_>0},
for each h>0, where [t/hi is the greatest integer not exceeding t/h.

Let x e X0 and T>0. Lemm 3 shows that T(t)xll is uniformly
bounded on [0, T] as h-*0+. And apparently, IIT([t/h]h)xll is uni-
ormly bounded on [0, T]. Thus we choose constants Mr and h00 so
that
(3.1) I1T(t)xll, T([t/ h]h)xll_Mr
or all t e [0, T] and 0 h_< h0.

Lemma4. Let Oh_ho. Then

[_ {])T([t/h]h)x-- T(a)xll--)l T([s/ h]h)x--
(3.2) +: {[[T([r/h]h)x_T()x[l_liT([r/h]h)x_T()xll}dv

_16hMk,
for all s, t, a and e [0, T] such that s <_ t and

Proof. By Lemma 2, we have

(3.3) [1T(mh)x-- Ta(a)x I1_ I1T(nh)x-- T(a)x
+ 2/(--AT(a)x, T(ih)x--T(a)x},

or a e [0, T] and integers n>_m>_O. Since (2.7) holds true with z=x,
integrating (3.3) with respect to a, we have

+ F,F-_/ h{ll T(ih)x-- T()x I1--II T(ih)x-- T(a)x
Put n=[t/h] and m=[s/h]. Then, on account o (3.1), we have (3.2).

Q.E.D.
Now, we set (r, a) R R--.R+ by

-(r,a)--liT([r/h]h)x--T(a)xll, for (v,a) e [0, T] [0, T],
[0, otherwise.

Let p be a molifier such that p e .q)(R), p>_0, supp [p][-1, 1] and
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p()d= l.
R

And we set p,(, r2)=s-p(/s)p(r]/s) for s>O. ’rich we define he regulari-
zation of by

By Lemma 4, we have immediately

f {,,(t, a)-,,(s, a)}da

or

for s, t,a and e [,, T--,], s_<t, a<_.
We set o0(r) as in the proof of Lemma 3 and set

o(r)=sup{llT(t)x-x I; O<_t<_r, O<_h<_r}.
Lemma 3 means that o(r)0 as r0+. Also we note that

(3.6) T([t/h]h)x T([s/h]h)x ]lg 30(D,
T(t)x-- T(s)x (),

for Ohge and t, sO such that ]t--s]g.
Lemma 5. Let and be suciently small. Then we have the

following estimate"

(3.7) (t, t) (s, s) 8Mr(30(D +())
+ T(M,,r+ 16hM-),

for 0<hgmin(,,h0) and s, te[,T--,--], sgt, where M,,r is a non-
negative constant, independent of h.

Proof. We follow the argument by T. Takahashi in [11]. (See
also Ph. B6nilan [1].) For r e [,, T--,--,], we set

I(r) -{,,(, a)

Taking account of (3.1), we see that all partial derivatives of ,, up
to the second order are uniformly bounded on [0, T] [0, T] with respec
to 0<hg h0. Hence, for some M,,> 0 we have

II(r)im,,r for r e [,, T--,--a],
by mean value theorem. Combing this with (3.5), we have

(3.8)
gM,,6+ 16hM6- for

Thus, integrating (3.8) with respect to , we obtain
(3.9) ,,(t, t) ,,(s, s) g T(M,,+ 16hM6-)
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for s, $ e [e, T--e--/], s_.
On the other hand, we have

I,(r, r)--(r,

and
[(r-, r--])--(r,

<_ 4Mr( T([(r--) / h]h)x-- T([r/ h]h)x + T(r-- ])x-- T(r)xl ).
Therefore, we have by (3.8)
(3.10) ,(r, r)--(r, r)
or 0( h_<min (e, h0) and r e

Combining (3.10) with (3.9), we have (3.7). Q.E.D.
Now we can complete the proof of Theorem. Note that

(, e)_2Mr(II T([e/h]h)x-- x
__2MT(2wo(e) + w())

or 0h_<min (, h0). Hence, taking s= in (3.7), we have
(t, t) <: 10Mr(3w0(D + (o(D) + T(M,,r6+ 16hM6-2)

or 0h_min (e, h0) and t e [e, T----]. Since M,,r is independent of
h and Mr is independent of both h and , this shows that T([t/h]h)x
--T(t)x converges to 0 as h-0/ or every t e (0, T) and the conver-
gence is uniform on every compact interval of (0, T). But, taking account
of (3.6) again, we see that the convergence holds true or every t e [0, T]
and is uniform on [0, T]. Since T(t)x-- T([t/h]h)x <_ (oo(h), the proof
of Theorem is completed.

Remark. Ater the preparation o this manuscripts, K. Kobyashi
[7] proved Theorem by using the ollowing estimate (see Appendix in
[10])"

IIT(t)x--T([t/h]h)xll<_(/-+h) llAxll 2or xe X0.
Acknowledgement. The author would like to express his hearty

thanks to Pro. I. Miyadera or valuable advices and personal en-
couragement.
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