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188. Singularities of the Riemann Functions of Hyperbolic
Mixed Problems in a Quarter-Space

By Seiichiro WAKABAYASHI
Faculty of Science, Tokyo University of Education

(Comm. by Kosaku Yosipa, M. J. A., Dec. 12, 1974)

Introduction. Matsumura [4] studied singularities of Riemann
functions of hyperbolic mixed problems in a quater-space and
determined the location of reflected waves by means of “localization
theorem”. In general Riemann functions also have singularities cor-
responding to lateral waves and boundary waves (see, Duff [3], Deakin
[2]). Lateral waves arise from the presence of branch points in
reflection coefficients and boundary waves are caused by real zeros of
Lopatinski determinant. In this note we give a localization theorem
which determines explicitly the location of lateral waves. The locali-
zation theorem of the fundamental solutions for the hyperbolic
operators with constant coefficients in the whole space was established
by Atiyah, Bott and Garding [1].

The author would like to express his hearty thanks to Professor
M. Matsumura for many valuable suggestions, by whom he was in-
spired the existence of the problem.

1. Assumptions and Riemann functions. Let R" denote the »-
dimensional Euclidean space and 5" its complex dual space and write
=y, -, Tn_y), ' =(2, -+, 2,) for the coordinate x=(x,, - - -, x,) in
R* and &=(&, - -,&,_), &'=(&, --,&) for the dual coordinate §
=(¢, :++,&,). Thevariable x, will play the role of “time”, the variables
Xy, + -, &, Will play the role of “space”. We shall also denote by R™
the half-space {x=(2/, z,) € R"; x,>0}. For differentiation we will use
the symbol D=14"%9/0dx,, - - -, 0/0%,).

Let P=P(£) be a hyperbolic polynomial of order m of » variables
& with respect to 9=(1,0, - --,0) ¢ Re £” in the sense of Garding. We
consider the mixed initial-boundary value problem for the hyperbolic
operator P(D) in a quater-space

(1) PDywx)=r(x), «eR:, x>0,
(2) Diw)(0,2")=0,  0<k<m—1, z,>0,
(3) B,(Dyu®) ls,-0=0,  1<7<I, #,>0.

Here the B,;(D) are boundary operators with order m,;. The number [
of boundary conditions will be determined later on. We assume that
the hyperplane z,=0 is non-characteristic for P(D) and B,(D).

Let Re A be the real hypersurface {£ € Re 5" ; P%(¢) =0}, where P(§)
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denotes the principal part of P(¢§). Further we denote by I'=I"(4,9)
(cRe £") the component of Re Z*\Re A which contains 9. When
& e Re A7'—is9 —il', with s large enough, we can denote the roots of
P(&, 2)=0 with respect to 1 by 4,(&), - -+, 2,(&), which are enumerated

so that
(4) Im 2,(§)>0, 1<k<l,

Im 2,(8) <0, l+1<k<m.
Here I, denotes the set {7 ¢ Re 5*°'; (/, 0) € I'}. This number [ deter-
mines the number of boundary conditions (see [4]). Let 4(&), - - -, pu(&)
be the roots of P(¢’, 4)=0. Since

(5) t—mP(tg, tw)—> P&, 1) as t—oo,

it follows that, with suitable labelling,

(6) () —>m(§), 1<k<m,  asit—oo.

We now define Lopatinski determinant for the system {P, B,} by
(7) R(€)=det (B,(&, (6D [T1<r<i<i (A:(§) — 24(§7))

and for the system {P°, BS} by

(8) R(¢)=det (BYE, ti(EN)/ [asr<izi () — pu(€)).

Here Bj(¢) denotes the principal part of B;(§). We state the assump-
tions that we impose on {P, B,}:
(A1) PO =0.8) - -p®,
where the p,;(§) are distinct strictly hyperbolic polynomials with
respect to 9 and irreducible over the complex number field C.
(A.2) For each p%¢) and non-zero & e Re&Z"! the real roots of
P3¢, =0 are at most double.
(A.3) If pj(¢, )=0 has real double roots for fixed &'(+0) € Re 5",
the number of its real double roots is 1 and pj(¢’, ©)=0 has no real
double roots for i+7.
(A.4) R(&)+#0 when & cReB~'—is¥ —il, with s large enough.
Here p5(&) denotes the principal part of p,(§).

Now we can construct the Riemann function G(z,y) for {P, B;}

(see [4]). Write
(9) Gz, ) =E@—y)—F(z,y),

xeR:, 2,20, y=0,%, -+, Yn) € RY,
where E(x) is the fundamental solution defined by

(10) E(@)=Q@2n)™" e P iz - €+ ] P(§ +1ip)~dé,

ne —s9—1rI.
Then the reflected Riemann function F(x,y) is written in the form

Fa,)=C0 [ 3 Ry, & +i)RE +if) ™
an X exp [¢(a'—y")- (&' +1i7)]
X {j exp [—itn(s +inn>JBj(e+in>P(s+z’»;>-1dsn}de'
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in the distribution sense with respect to (x,%) € R” X R*. Here the
Ry(x,, &) are defined by replacing in R(¢’) the j-th row vector of the
determinant with the vector (exp [i4,(8)x,], - - -, exp [12,(§)x,]).

2. Localization theorem. According to [1], we introduce the
notion of localization of polynomials.

Definition. Let P(£) be a polynomial of degree m >0 and develop
t™"P(t¢+0) in ascending power of ¢
(12) t"P'6+0)=t"P.(0)+ O+,
where P,() is the first coefficient that does not vanish identically in ¢.
The number p=m.(P) is called the multiplicity of & relative to P and
the polynomial {— P.({) the localization of P at &.

Let D(P,)(&) and D(P%)(E) denote the discriminants of P (&, 2
=P0,1) []i; A—2x(£7)=0 in 2 and P(&, ))=P(0,1) [[}s (r— (&)
=01n g, respectively. We assume that &,=(&,, - - -, &x) € Re 5" satisfies
the following conditions: (1) & e ReA. (i) D(P%)(E))+0. (iii) There
exists b,1<b<, such that x,(&) is a real double root of p(&;, 1)=0.
(V) &n#w(E). (v) RY(ED+0. Moreover we choose a number & such
that (vi) y (&) is real and k#b, 1<k<l. Then there exists a unique
number 7 such that
(13) PUE, pe(6)) =0 for &=§&—it™'9.

Put with ¢ small positive

() = 2ni)~! j
lz—pr(é’)| =0

X 2{p3(&;, 2)0p}] 02(5;, 2) — DY/ 02(85, 2) - P10, 2)}

X {p-(&, )} *dz,

where pi(&/,2) denotes the principal part of p.(¢,2)—p%(&,2). More-
over put

Fe, (@, ) =Qm)™" >\, 4;6(E)B5(Ey) - A4(£0) " exp [t (60)2r]
X f exp [i(x' — vy + x, grad,, u(&3)- (' +17)]
15) Rogn—1

x{[7 exp L= iyaC g PG+ i) da

Fyy (@, 9)=@0) " T4 (45 (EDAE) ™ + A, (E) ') - AE)BYE)
xexp lia@m,) | Verad, PE0-C i)+ A
X exp [ia’ —y' + . grad,. p(£9)) - (&' +1i7)]
x{[”_ exp [—itaCat in VP C+ i)t

(14)

(16)

-0

Here 4(&;) denotes the determinant (BY(&;, u.(§0)) and 4,,(&) its (7, k)-
cofactor, and 4'(&;) is defined by replacing in 4(&;) the b-th column
vector with ‘(0B?/0%,(&, 1(&0)), - - -, 0By 08,(&5, 1(€D)) and 4,(&)) denotes
its (4, k)-cofactor. %%y and p(¢p) will be given by (25) and (34) in
Section 3, respectively. Then we have following
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Localization theorem. Assume that the conditions (A. 1)-(A. 4)
are satisfied and that &, and k satisfy the above conditions (i)—(vi). Put
p=m.(P). Then
an tm-r 12 exp [—it{(@' —¥) - &+ Tnptx(§0) — Ynbon HF (2, )

_tI/ZFeo,k(x» ?/)“‘—)Feo,kb(x, Y) as t—oo
in the distribution sense with respect to (x,y) € R X R" and
(18) SUPD (2,4 Feo,10(2, ¥) Csign supp s o, F(@, ¥).
Moreover
19) SUPD (2, Feo i C{(®, ¥) € REX R 5 Y=(0, Yy, -+ -, Yn),

[96'—~’!/'+ T gradé’ ﬂk(&(/))] . 77/"'?/71777&20’ ne I’eo,b}’
where Iy, ,=I'(A.,,, 9 and Re A, ,={ e Re 5"; Py ({)-[grad, p°(§)-{']
=0}.

Remark 1. Matsumura [4] showed that
(20) SUPD 2,4y Fe,  C SINE SUPD 5 4y F.

This result determines the location of reflected waves. Our result deter-
mines the location of lateral waves.

Remark 2. The condition (A. 3) can be removable.

3. Outline of proof. If ¢ is chosen sufficiently large, then we
can write 2,(t6;+ ¢ +47’) in the form
@1 A&+ +in) =o(tes+ L +in) + Vp(t$6+_5’+z'n') o

for fixed {+1ipe Re B"—is9—il,
where Im +/p(t&;+ & +47/) >0 and o(-) and p(-) are analytic for [{/+iy/|
<c¢t. In fact, 2,(t&+¢ +1y) is a root of the equation

(22) 2—=b,(-)24+271(D,(- )’ —=by(+)) =0,

where

23)  b,(t&+ ¢ +in)=2r)! I t*2-9p,/02(-, t2) - p,(-, t2)"'dz,
lz—pp(6g) 1 =0

(24)  by(t&+C +in)=(2ri)! f t%2%-0p,/02(-, tz) - p,(-, t2)"'dz.
lz—po(§4)1 =0

Similarly we have

(25) ptE0 4+ + i) =a*(t&0+ & + i) -+ V o' BE[+ T +ip).

Put

26) F @,y )=tm 24 exp [—it{(@' — V') - §54 Laptr(5)) — YnEon}]
X F(x, y) —t"°F ¢, (2, Y).
The integrals over |+ ip|>c,t¥Y on the right hand side of (26) tend to
zero in the distribution sense as t— oo, where N is chosen large enough
and 7 is fixed so that e —s9—17" and (3/,0) ¢ —s9—I". The term cor-
responding to the integrals over |[{+1ip|<c,tYY in (26) is written in the
form .
Ffo,kb(x’ Y; 1)

=2r)" f £ 3734 noa cofy (Bo(t&0+C +1y, 2,(t60+ ' +17)))
X det (By(-, 2,(-)) " exp [’ —y) - (' +i7)]
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X exp [iub{2,(84+ '+ 87) [t ED)]
@D x{[”_exp [—iyaCatinIBy(to+C+in)

% {tp‘”‘P(tfo I z‘n)}"’dcn }dc'— @) 24 (6 BYE) A(E)
 exp [ia(E)) ] j exp [i(@ — Y + @, grade (&) +i7)]
x {j exp [—z‘yn(cn+innnPeo(cm)-ldcn}dcc

—-c0

When | +1ip|< ¢,t/Y, we have
(28) Cijk (Bq( *y 21-( * ))) -det (Bq( ) zr( * )))—1=/11j( ‘) + Azj( * )’\/‘0_(—'— ’
where 4,,(-) and 4,,(-) are analytic for [{’+%y|< c,tY?. If the condition
(A. 3) is removed, (28) does not hold in general. However, by obvious
modifications we can prove our theorem. For [{+ip|<c,tY we have
(29) tp(t&5+ ¢ +in) =grad,. p°(&) - (&' +in) + B(EQ) + 0L 1Y),
(30) t~™B(t&,+ +ip) [ {t?~™P(t&,+ L + i)}
=BY(&) - P, (C+ip) 1+ 0t 1VY),
31 t™id, (- ) =4 (ED)A(ED) T 40 Y),
(32) t™ Ay () = A (EDAED ™ + A, (6D A (EDA(ED) "2+ 01 /F),
(33) 10,2860+ &'+ 1) [ T — 1 (§0))

=1xa(grad,, uy(§0) - (¢’ +17) + ax(§9)) + 0(E+¥Y),
where

BE) = @) j 172202 —24,ED)

l2—pp(£0) | =8
X {0pi/92(&s, 2) - D&, 2) — i, 2) - 8P/ 32(E5, 2)HDIUES, 2)} 2d.

From (29)-(33) i1~: follows that
(35) Feo,kb(x’ Y, t)—‘>Feo,kb(x, Y) as t—oo.
Moreover it follows from the conditions (A.1) and (A.2) that
grad,. p°(&) is a real vector and that
(36) grad,. p"(§)- & #0,
i.e. {—grad,. p"(&) -’ is a hyperbolic polynomial with respect to 9. This
completes the proof.

The detailed proof and some examples will be given in a forth-
coming paper.
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