# 181. Cohomology of Vector Fields on a Complex Manifold 

By Toru Tsujishita<br>University of Tokyo

(Comm. by Kunihiko Kodaira, m. J. A., Dec. 12, 1974)
§ 1. Let $M$ be a complex manifold. Let $\mathcal{A}$ denote the space of smooth vector fields of type ( 1,0 ) on $M . \mathcal{A}$ is regarded as a Lie algebra under the usual bracket operation. Recently it is shown that the Lie algebra structure of $\mathcal{A}$ uniquely determines the complex analytic structure of $M$ (I. Amemiya [1]), and thus it would be interesting to calculate the cohomology of the Lie algebra $\mathcal{A}$ associated with various representations. In this note, we shall state some results concerning the cohomology of the Lie algebra A. Details will appear elsewhere.

The author would like to express his gratitude to Professor K. Shiga for his valuable suggestions.
§ 2. We recall here briefly the definition of the cohomology group of a Lie algebra $\mathfrak{g}$ associated with a $\mathfrak{g}$-module $W$. Let $C^{p}(\mathfrak{g} ; W)$ denote the space of alternating $p$-forms on $g$ with values in the vector space $W$ for $p>0$; we put $C^{0}(\mathfrak{g} ; W)=W$ and $C^{p}(g ; W)=0$ for $p<0$. The coboundary operator $d: C^{p}(g ; W) \rightarrow C^{p+1}(g ; W)$ is defined by the following formula:

$$
\begin{aligned}
& (d \omega)\left(X_{1}, \cdots, X_{p+1}\right)=\sum_{i=1}^{p+1}(-1)^{i-1} X_{i} \omega\left(X_{1}, \cdots, \hat{X}_{i}, \cdots, X_{p_{+1}}\right) \\
& \quad+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \cdots, \hat{X}_{i}, \cdots, \hat{X}_{j}, \cdots, X_{p_{+1}}\right)
\end{aligned}
$$

$\left(X_{1}, \cdots, X_{p+1} \in \mathfrak{g}, \omega \in C^{p}(g ; W)\right.$ ). The $p$-th cohomology group of this cochain complex $C(g ; W)=\oplus_{p} C^{p}(\mathfrak{g} ; W)$ will be denoted by $H^{p}(g ; W)$. If the g -module $W$ has a ring structure such that $X(f g)=(X f) g+f(X g)$ $(X \in \mathfrak{g}, f, g \in W)$, then the total cohomology $H^{*}(g ; W)=\oplus_{p} H^{p}(g ; W)$ has a graded ring structure. (For more details, see [3].)
§ 3. The Lie algebra $\mathcal{A}$ has a representation on the ring $\mathscr{F}$ of smooth functions on $M$ when the vector fields are identified canonically with the derivations on the ring $\mathcal{F}$. We shall denote by $C_{4}^{p}(\mathcal{A} ; \mathcal{F})$ the subspace of $C_{0}^{p}(\mathcal{A} ; \mathscr{F})$ consisting of the elements $\omega$ such that $\operatorname{supp}\left(\omega\left(X_{1}, \cdots, X_{p}\right)\right) \subset \bigcap_{i=1}^{p} \operatorname{supp}\left(X_{i}\right)\left(X_{1}, \cdots, X_{p} \in \mathcal{A}\right)$. Furthermore we shall denote by $C_{\partial}^{p}(\mathcal{A} ; \mathscr{F})$ the subspace of $C_{4}^{p}(\mathcal{A} ; \mathscr{F})$ consisting of the elements $\omega$ such that, if $f \in \mathscr{F}$ is anti-holomorphic on an open subset $U$ of $M$, then $\omega\left(f X_{1}, X_{2}, \cdots, X_{p}\right)=f \omega\left(X_{1}, X_{2}, \cdots, X_{p}\right)$ on $U$ for any $X_{1}$, $X_{2}, \cdots X_{p} \in \mathcal{A}$. If we put $C_{\Delta}(\mathcal{A} ; \mathscr{F})=\oplus_{p} C_{\mathcal{A}}^{p}(\mathcal{A} ; \mathscr{F})$, and $C_{\partial}(\mathcal{A} ; \mathscr{F})$ $=\oplus_{p} C_{\partial}^{p}(\mathcal{A} ; \mathscr{F})$, then $C_{\Delta}(\mathcal{A} ; \mathscr{F})$ and $C_{\partial}(\mathcal{A} ; \mathscr{F})$ form a subcomplex of
$C(\mathcal{A} ; \mathscr{F})$ and $C_{\Delta}(\mathcal{A} ; \mathscr{F})$, respectively. The $p$-th cohomology group of the complex $C_{4}(\mathcal{A} ; \mathscr{F})$ and $C_{\partial}(\mathcal{A} ; \mathscr{F})$ will, respectively, be denoted by $H_{d}^{p}(\mathcal{A} ; \mathscr{F})$ and $H_{\partial}^{p}(\mathcal{A} ; \mathscr{F})$. We note that the total cohomology groups $H_{\Delta}^{*}(\mathcal{A} ; \mathscr{F})=\oplus_{p} H_{\Delta}^{p}(\mathcal{A} ; \mathscr{F})$ and $H_{\partial}^{*}(\mathcal{A} ; \mathscr{F})=\oplus_{p} H_{\partial}^{p}(\mathcal{A} ; \mathscr{F})$ are graded rings.

Theorem 1. We have an isomorphism of graded rings:

$$
H_{\partial}^{*}(\mathcal{A} ; \mathscr{F}) \cong H^{*}(M, \overline{\mathcal{O}}) \otimes H^{*}(\operatorname{gl}(n, C) ; C),
$$

where $\overline{\mathcal{O}}$ denotes the sheaf of germs of anti-holomorphic functions on $M$, and the complex dimension of $M$ is denoted by $n ; H^{*}(\mathfrak{g r}(n, C) ; C)$ is the cohomology of the Lie algebra $\mathfrak{g l}(n, C)$ associated with the trivial $\mathfrak{g l}(n, \boldsymbol{C})$-module $\boldsymbol{C}$.

If we denote by $c$ the inclusion homomorphism of cochain complexes: $C_{\partial}(\mathscr{A} ; \mathscr{F}) \subset C_{A}(\mathcal{A} ; \mathscr{F})$, then we have

Theorem 2. For $p \leq n, \iota$ induces an isomorphism:

$$
\iota^{p}: H_{\partial}^{p}(\mathcal{A} ; \mathscr{F}) \longrightarrow H_{d}^{p}(\mathcal{A} ; \mathscr{F}) .
$$

§ 4. Next, we shall consider the adjoint representation of the Lie algebra $\mathcal{A}$. As before we shall denote by $C_{A}^{p}(\mathcal{A} ; \mathcal{A})$ the subspace of $C^{p}(\mathcal{A} ; \mathcal{A})$ consisting of the elements $\omega$ such that $\operatorname{supp}\left(\omega\left(X_{1}, \cdots, X_{p}\right)\right)$ $\subset \bigcap_{i=1}^{p} \operatorname{supp}\left(X_{i}\right)$ for all $X_{1}, \cdots, X_{p} \in \mathcal{A}$. Then $C_{\Delta}(\mathcal{A} ; \mathcal{A})=\oplus_{p} C_{4}^{p}(\mathcal{A} ; \mathcal{A})$ is in fact a subcomplex of $C(\mathcal{A} ; \mathcal{A})$, and its cohomology will be denoted by $H_{4}^{*}(\mathcal{A} ; \mathcal{A})=\oplus_{p} H_{4}^{p}(\mathcal{A} ; \mathcal{A})$.

Theorem 3. We have an isomorphism

$$
H_{\not}^{p}(\mathcal{A} ; \mathcal{A}) \cong \underset{u+v+1=p}{\oplus} H^{u}(M, \bar{\Theta}) \otimes H^{v}(\mathfrak{g l}(n, C) ; C) \quad \text { for } p \leq n,
$$

where $\bar{\Theta}$ denotes the sheaf of germs of anti-holomorphic vector fields of type $(0,1)$ on $M$.

Corollary. The quotient algebra of the Lie algebra of the derivations of $\mathcal{A}$ divided by the ideal of the inner derivations is isomorphic to the Lie algebra $H^{0}(M, \bar{\Theta})$.

Here $H^{0}(M, \bar{\Theta})$ is regarded as a Lie algebra under the usual.bracket operation of vector fields.
$\S 5$. We shall outline the proofs of the theorems.
From an obvious generalization of the Peetre's theorem (cf. [4]), we infer the following

Lemma 1. $\quad C_{\partial}^{p}(\mathcal{A} ; \mathscr{F}) \cong \Gamma\left(\bigwedge^{p}(J T)^{\prime}\right)$.
Here $J T=\lim _{\leftarrow} J^{k, 0}(T)$ and $J^{k, 0}(T)$ is the $k$-th holomorphic jet bundle of the holomorphic tangent bundle $T$, whose fiber over a point $x \in M$ is $\Gamma(T) /\left(I_{x}^{k+1}+\bar{I}_{x}\right) \Gamma(T), I_{x}$ and $\bar{I}_{x}$ being the ideals of the ring $\mathscr{F}$ generated, respectively, by such elements $f$ as $\left(\partial f / \partial z^{a}\right)(x)=0$ and $\left(\partial f / \partial \bar{z}^{\alpha}\right)(x)=0$ for $\alpha=1, \cdots, n$, with respect to a holomorphic coordinate system $\left\{z^{1}\right.$, $\left.\cdots, z^{n}\right\}$ around $x$.

Next, we shall introduce in $C_{\partial}(\mathcal{A} ; \mathscr{F})$ a filtration due to $I . M$.

Gel'fand and D. B. Fuks ([2]). Put $F_{p} C_{\partial}^{p+q}(\mathcal{A} ; \mathscr{F})=\Gamma\left(\left(\bigwedge^{p} T^{\prime}\right)\right.$ $\wedge\left(\bigwedge^{q}(J T)^{\prime}\right)$, where $T^{\prime}$ and $(J T)^{\prime}$ denote, respectively, the dual bundle of $T$ and $J T$ and $\left(\bigwedge^{p} T^{\prime}\right) \wedge\left(\bigwedge^{q}(J T)^{\prime}\right)$ denotes the subbundle of $\wedge^{p+q}(J T)^{\prime}$ whose fiber over a point $x$ of $M$ is spanned by the elements of the form $\omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \eta_{1} \wedge \cdots \wedge \eta_{q}\left(\omega_{i} \in T_{x}^{\prime}, \eta_{j} \in(J T)_{x}^{\prime}\right)$. It follows then that $d\left(F_{r} C_{\partial}^{m}(\mathcal{A} ; \mathscr{F})\right) \subset F_{r} C_{\partial}^{m+1}(\mathcal{A} ; \mathscr{F})$, and we shall denote by $\left\{E_{r}^{p, q}, d_{r}^{p, q}\right\}$ the spectral sequence associated with this filtration, which is convergent to $H_{\partial}^{*}(\mathcal{A} ; \mathscr{F})$. Then we can show

Lemma 2. $\quad E_{2}^{p, q} \cong H^{p}(M, \overline{\mathcal{O}}) \otimes H^{q}(\mathfrak{g l}(n, \boldsymbol{C}) ; \boldsymbol{C})$.
Using a formula in the Chern-Weil theory, we can prove the degeneracy of the spectral sequence:

Lemma 3. $d_{r}^{p, q}=0$ for $r \geq 2$.
These two lemmas clearly imply Theorem 1.
In order to prove Theorem 2, we introduce a similar filtration in the complex $C_{\Delta}(\mathcal{A} ; \mathscr{F})$ and compare the $E_{1}$-terms. Then the proof is reduced to the calculation of the cohomology of formal vector fields.

The proof of Theorem 3 is similar to that of Theorem 1.
§6. Finally we remark that Theorem 2 enables us to improve Theorem 3.9 of [4]. Let $E$ be a complex smooth vector bundle over $M$ and let $\Gamma(E)$ be the space of smooth cross-sections of $E . \Gamma(E)$ is called a differential $\mathcal{A}$-module of connection type if $\Gamma(E)$ is an $\mathcal{A}$-module such that $\operatorname{supp}(X s) \subset \operatorname{supp}(X) \cap \operatorname{supp}(s)$ and $X(f s)=(X f) s+f(X s)$ holds for $X \in \mathcal{A}, s \in \Gamma(E), f \in \mathscr{F}$. Then

Theorem 4. If $\Gamma(E)$ is a differential A-module of connection type, then $\kappa^{*}($ Chern $(E))=0$, where Chern $(E)$ denotes the subring of $H^{*}(M, C)$ generated by the Chern classes $c_{i}(E)(i \geq 1)$ and $\kappa^{*}: H^{*}(M, C)$ $\rightarrow H^{*}(M, \overline{\mathcal{O}})$ denotes the homomorphism induced by the inclusion map $\kappa: C \subset$ ( $)$.

## References

[1] I. Amemiya: Lie algebra of vector fields and complex structure (to appear).
[2] I. M. Gel'fand and D. B. Fuks: Cohomologies of Lie algebras of vector fields with non-trivial coefficients. Functional Analysis and their Applications, 4, 181-192 (1970).
[3] K. Shiga: Cohomology of Lie algebras over a manifold. I. Journ. Math. Soc. Japan, 26, 324-361 (1974).
[4] K. Shiga and T. Tsujishita: Differential representations of vector field (to appear).

