5. The Determinant of Matrices of Pseudo-differential Operators

By Mikio Sato*) and Masaki Kashiwara**)

(Comm. by Kôsaku Yosida, m. J. A., Jan. 13, 1975)

The purpose of this paper is to give a definition of the determinant of matrices of pseudo-differential operators (of finite order) and to establish some of its properties. Let X be a complex manifold, and $P^{*} X$ (resp. $T^{*} X$) be its cotangent projective (resp. vector) bundle. The projection from $T^{*} X-X$ onto $P^{*} X$ is denoted by γ.

Our result is the following.
Theorem. For every matrix $A(x, D)=\left(A_{i j}(x, D)\right)_{1 \leq i, j \leq N}$, whose entries $A_{i j}(x, D)$ are pseudo-differential operators defined on an open set $U \subset P^{*} X$, one can canonically associate $\operatorname{det} A(x, D)$, which is a homogeneous holomorphic function defined on $\gamma^{-1}(U)$, and possesses the following properties
a) $\operatorname{det} A(x, D) B(x, D)=\operatorname{det} A(x, D) \cdot \operatorname{det} B(x, D)$
b) $\operatorname{det}(A(x, D) \oplus B(x, D))=\operatorname{det} A(x, D) \cdot \operatorname{det} B(x, D)$
c) if there are integers m_{i} and n_{j} such that order $A_{i j}(x, D) \leq m_{i}$ $+n_{j}$ and $\operatorname{det}\left(\sigma_{m_{i}+n_{j}}(A(x, D))\right.$ does not vanish identically, then
$\operatorname{det} A(x, D)=\operatorname{det}\left(\sigma_{m_{i+n}}\left(A_{i, j}\right)\right)$,
where $\sigma_{m_{i+n}}\left(A_{i j}\right)$ denotes the principal symbol of $A_{i j}$ (which is 0 if $A_{i j}$ is of the order $\leq m_{i}+n_{j}-1$). In particular, our determinant reduces to the concept of the principal symbol, if the size N is 1 .
d) $A(x, D)$ is invertible if and only if $\operatorname{det} A(x, D)$ vanishes nowhere.
e) if $P(x, D)$ is a pseudo-differential operator such that $[P, A]=0$, then $\{\sigma(P), \operatorname{det} A\}=0$.

Corollary. If $A(x, D)$ is a matrix of differential operators, then $\operatorname{det} A(x, D)$ is a homogeneous polynomial on the fiber coordinate ξ.

Corollary is an immediate consequence of Theorem. In fact, by adding an auxiliary parameter t, one can regard $A(x, D)$ as a pseudodifferential operator defined on a (t, x)-space $C \times X$. Therefore, $\operatorname{det} A(x, D)$ is defined all over $T^{*} X$, which implies $\operatorname{det} A(x, D)$ is a polynomial on ξ.

In order to prove Theorem, we prepare the following lemma.
Lemma (see [2]). Let K be a (not necessarily commutative) field, $K=\bigcup_{m \in Z} K_{m}$ be a filtration of K satisfying

[^0]1) The intersection of all K_{m} is zero,
2) $K_{m} \subset K_{m+1}$, and $K_{1} \neq K_{0}$,
3) K_{m} is closed under addition,
4) $K_{m_{1}} K_{m_{2}} \subset K_{m_{1}+m_{2}}$,
5) $\left[K_{m_{1}}, K_{m_{2}}\right] \subset K_{m_{1}+m_{2}-1}$,
6) If α does not belong to K_{m}, then α^{-1} belongs to K_{-1-m}.

Then $k=K_{0} / K_{-1}$ is a commutative field and $L=K_{1} / K_{0}$ is a vector space over k of dimension 1 and $K_{m} / K_{m-1}=L^{\otimes m}$. The canonical homomorphism from K_{m} to $L^{\otimes m}$ is denoted by σ_{m}. Then, there is a map det: $M(n: K)$ $\rightarrow \oplus_{m \in \boldsymbol{Z}} L^{\otimes m}$ satisfying
a) $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$.
b) $\operatorname{det}(A \oplus B)=\operatorname{det} A \operatorname{det} B$.
c) If there are integers m_{i} and n_{j} such that $A_{i j} \in K_{m_{i}+n_{j}}$ and $\operatorname{det}\left(\sigma_{m_{i+n_{j}}}\left(A_{i j}\right)\right)$ is non zero, then $\operatorname{det}\left(A_{i j}\right)=\operatorname{det}\left(\sigma_{m_{i}+n_{j}}\left(A_{i j}\right)\right)$.
d) $\operatorname{det} A \neq 0$ if and only if A is invertible.
e) If $\alpha \in K$ centralizes a matrix A, then $\sigma(\alpha)$ centralizes $\operatorname{det} A$.

Since this is a purely algebraic lemma, we omit its proof.
Now, let p be a point in $P^{*} X$. Let K be a quotient field of a stalk $\mathcal{Q}_{X, p}^{f}$ of \mathcal{P}_{X}^{f} at p. Then the canonical filtration of \mathcal{P}_{X}^{f} defined by order induces a filtration of K. Then $k=K_{0} / K_{-1}$ is a field of germs of meromorphic functions at p, and L is a set of germs of homogeneous meromorphic functions of order 1 at p. Thus, we can $\operatorname{define} \operatorname{det} A(x, D)$ as a homogeneous meromorphic functions defined on $\gamma^{-1}(U)$.

Proposition. $\operatorname{det} A(x, D)$ is a holomorphic function.
Proof. We will prove this by the induction on the size of $A(x, D)$. Levi's theorem says that a meromorphic function is holomorphic if it is holomorphic except on a 2 -codimensional analytic set. Therefore, it suffices to prove that $\operatorname{det} A(x, D)$ is holomorphic outside a 2 -codimensional set. We may assume $\operatorname{det}(A(x, D))$ is holomorphic except on a non singular hypersurface $f=0$, and $\left.\left(\sum \xi_{i} d x_{i}\right)\right|_{f-1(0)} \neq 0$. By a quantized contact transformation, we can set $f=\xi_{1}$. Let $r_{i j}$ be a multiplicity of $\sigma\left(A_{i j}\right)$ at $\left\{\xi_{1}=0\right\}$. Set $r=\min \left(r_{i j}\right)$. We prove the proposition by the induction of r.

Without loss of generality, we may assume $r_{11}=r$, and $\sigma\left(A_{11}\right) / \xi_{1}^{r}$ never vanishes by Levi's theorem.

By Späth's theorem, $A_{i j}$ has the form

$$
A_{1 j}=A_{11} Q_{j}+R_{j}
$$

where

$$
R_{j}=\sum_{\nu<r} R_{j, \nu}\left(x, D^{\prime}\right) D_{1}^{\nu} \quad\left(\text { where } D^{\prime}=\left(D_{2}, \cdots, D_{n}\right)\right)
$$

Therefore

Setting the first matrix of the right hand side $\tilde{A}(x, D)$, we have $\operatorname{det} \tilde{A}(x, D)=\operatorname{det} A(x, D)$. If one of R_{j} is non zero, the multiplicity of some $\sigma\left(R_{j}\right)$ at $\left\{\xi_{1}=0\right\}$ is strictly less than r. Therefore the hypothesis of the induction implies $\operatorname{det} \tilde{A}(x, D)=\operatorname{det} A(x, D)$ is holomorphic. If all R_{j} are zero, $\operatorname{det} \tilde{A}$ is the product of $\sigma\left(A_{11}\right)$ and the determinant of an ($N-1$) $\times(N-1)$ matrix of pseudo-differential operators. In this case, also, the hypothesis of induction on the size again implies that $\operatorname{det} A(x, D)$ is holomorphic.
q.e.d.

Since Property (d) is proved in the same argument, we omit its proof.

Example.

$$
A(x, D)=\left[\begin{array}{cc}
x D+\alpha(x) & D^{2}+\beta(x) D+\gamma(x) \\
x^{2} & x D+\delta(x)
\end{array}\right]
$$

In this case,

$$
\operatorname{det} A(x, D)= \begin{cases}(\alpha+\beta-1-x \gamma) \delta & \text { if it is not zero } \\ \alpha \beta-2 \beta+x \beta^{\prime}-x^{2} \delta & \text { if } \alpha+\beta-1-x \gamma=0\end{cases}
$$

In fact,

$$
A(x, D)=\left[\begin{array}{cc}
1 & \\
& x^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & x D+\alpha \\
& 1
\end{array}\right]\left[\begin{array}{cc}
0 & Q \\
1 & x D+\beta+2
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& x^{-2}
\end{array}\right]
$$

where $Q=(1-\alpha-\beta+x \gamma) x D+\left(2+2 \gamma x+x^{2} \delta-\alpha \beta-2 \alpha-x \beta^{\prime}\right)$.
Example. Let $A=\left(A_{i j}\right)_{1<i, j \leq 2}$. If $A_{21} \neq 0 \operatorname{det} A=\sigma\left(A_{21}\right) \sigma\left(A_{11} A_{21}^{-1} A_{22}\right.$ $\left.-A_{12}\right)$. If $A_{11} \neq 0 \operatorname{det} A=\sigma\left(A_{11}\right) \sigma\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)$.

References

[1] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and Pseudo-differential Equations. Lecture note in Math., No. 287, Springer, Berlin-Heidel-berg-New York, pp. 265-529 (1973).
[2] E. Artin: Geometric Algebra. Interscience (1957).

[^0]: *) Research Institute of Mathematical Sciences, Kyoto University.
 **) Department of Mathematics, Faculty of Sciences, Nagoya University.

