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Let K be an algebraic number field of finite degree, p a prime
integer, L/K a Z-extension (or F-extension), and let A be an abelian
variety defined over K. With these settings, recently Mazur [3] in-
vestigated the problem concerning the finite generatedness of the group
of rational points A(L). He obtained some sufficient conditions ior
affirmative solution of this problem. In this note we prove that the
torsion part of A(L) is finite if L/K is cyclotomic and if A has good
reduction at some prime dividing p. In fact we prove a more general
theorem:

Theorem. Let K be a finite extension field of ., L the smallest
field containing K and all p-power roots of 1, and let A be an abelian
variety defined over K which has good reduction. Then the torsion
part of A(L) is finite.

Proof. First we show that there is a finite extension K’/K con-
tained in L such that L/K’ is a totally ramified extension. In fact,
take a finite extension El O. such that E(R) E K (cf. Lang, Alge-
braic Number Theory, Chap. II, 2, Proposition 4, Corollary). Let F
be the smallest field containing E and all p-power roots of 1. From
[1], 7 and [3], 2(c), there is a finite extension E’/E contained in F
such that for some prime v of E’ dividing p, FIE’ is totally ramified at
v. Then, putting K’ to be the completion o E’ at v, we obtain the
desired field. From now on, taking K’ instead of K, we assume that
L/K is totally ramified. Now denote by A(L)(’) the p’-primary part
o. A(L), and take y e A(L)(’’). I p’ is relatively prime to p, then, by
[8], Theorem 1, K(y)/K is an unramified extension, and this means
y e A(K)(’). Hence A(L)(’) is contained in A(K)(’) and, rom the well
known act that the torsion part of A(K) is finite, we conclude that
A(L)(’) is finite for all primes p’ distinct rom p and is zero or almost
all p’. Therefore it is sufficient to consider the p-part A(L)().

We denote by T(A) the Tare-module of A, T(A(L)) the fixed points

of T(A) under Gal (/L), where is the algebraic closure of K. By
the elementary divisor theorem, under suitable basis we can write

these modules as: T(A) Zq...
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Z0...0, where a are non-negative integers. We claim that all
a,...,a are 0, i.e., T,(A(L)) is a Z-direct summand of T,(A). To
show this, it is sufficient to remark that, if a(px)=px or a e Autz
(T(A)), aO, x e T(A), then we have ax=x, since T(A) is torsion
ree.

Now we have the following equivalences"

A(L) is an infinite group
(===:} for any positive integer n, there exists an element Xn e A(L)
o order pn

T(A(L)) O.
To see the second equivalence, we consider the projective system con-
sisting of the sets A={x e A(L) Ix is of order pn} and the maps p" A
-.A_ which are induced from multiplication by p. As the projective
limit of non-empty finite sets is non-empty (see, e.g., Serre, Coho-
mologie Galoisienne, 1.4, Lemme 3), the second assertion implies the
third. The converse is trivial.

Let G-Gal(L/K), and let p’ G-Aut V,(A(L)) be the p-adic

representation corresponding to V(A(L))= T(A(L))(R)z,, and denote
by g the Lie algebra of p(G). As T(A(L)) is a Z-direct summand of
T(A), it may be viewed as the Tate-module of some p-divisible group
over the integer ring of K, according to [9], 4, Proposition 12. Hence
we can use the Hodge-Tate decomposition or such modules (cf. [9], 4
or [7], 5). That is, putting X= V(A(L))(R)C, where C is the com-
pletion of K, X may be decomposed as"

X X(0)X(1) where X(i) X()(R):C,
and X()={x e Xlgx-z(g)x, or g e Gal (/K)}, with ;" Gal (i/K)Z
the homomorphism such that g--() or g e Gal (K/K), and or all p-
power roots o 1.

Now let F be the completion of the maximal unramified extension
o K. Then, as the representation p may also be considered as the
representation of Gal (F/F), by [5], Theorem 1, we obtain the ollow-
ing characterization of the Lie algebra g" g is the smallest subspace o
End V(A(L)) defined over such that (R) C contains ( e Endc X
is the element such that x=ix for x e X(i). Here we note that the
decomposition of X with base field F is essentially the same as the
decomposition X--X(O)X(1), by [6], .Chp. III, Appendix, Theorem
1). As G contains a subgroup of finite index which is isomorphic to
Z, we have dim g_<_l. Hence we see that is defined over .
That is, V(A(L))=V(O)V(1) where V(i)-{x e V(A(L))lx--ix}.
(In act, we write x e V(A(L)) as x=(x-x)+x, and note that
x-x, Cx are in V(A(L)) since is defined over , and these are
elements of V(0), V(1) (respectively) siace is idempotent.) Note
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that V(i)= V(A(L)) X(i), hence V(i) is a G-module.
If V(0)#0, then the group p(G) restricted to V(0) is a finite group,

since its Lie algebra is 0. Hence, by extending K finitely, we see that
Gal (L/K) acts trivially on V(0). But this means V(A(K))#-O, and
this contradicts the fact that torsion part of A(K) is finite.

If V(A(L))= V(1)#0, then the Lie algebra g is represented in the
diagonal form

Hence, by extending K finitely, Gal (L/K) is represented by a character
Gal (L/K)--.Z. From the Hodge-Tate decomposition, we see that this
character is equal to ;. Now let D be the integer ring of K, k its residue
field, F the completion of the maximal unramified extension of K, and
let R be the integer ring of F. Let G(p), A(p) be the p-divisible groups
over D obtained from the multiplicative group, and from the abelian
variety A (respectively). Then, since T(G(p))--Z, T(A(L))-Z (for
some n), and since Gal (L/K) is represented by the character ; on
T(A(L)), we have a Gal (L/K)-homomorphism (hence also a Gal (/K)-
homomorphism) T(G(p))--.T(A(L))T(A) whose image is a non-
trivial Z-direct summand of T(A). By [9], 4.2, Theorem 4, Corol-
lary 1, we have a morphism z: G(p)-.A(p) corresponding to the above
homomorphism. We need the following lemma.

Lemma. Let A(p) be (any) p-divisible group over D. Let : G(p)
-.A(p) be a morphism of p-divisible groups such that, considered on
Tare-modules, the image of is a Z-direct summand of T(A(p)). Then
is a closed immersion.

Granting the lemma, we proceed as follows. Reduce the morphism
modulo the maximal ideal, then we obtain a closed immersion

z:G(p)--.A(p). Consider the Frobenius endomorphism Fr on these
groups (cf. [3], 4(e)). Then, from loc. cit., the eigenvalue of Fr on
G(p) (which is equal to q the number of the elements of k) is among
the eigenvalues of Fr on A(p) (whose complex absolute values are
equal to /-), and this is a contradiction. From these contradictions
we conclude that V(A(L))=O, i.e., A(L) is a finite group.

Lastly we prove the lemma. As G(p) is a connected-tale group
(i.e., it is a connected p-divisible group whose dual is tale), = factors as

G(p)--->A(p)---->A(p)
where A(p) is the connected component of A(p). Then, considering
the Cartier dual, we see that ’ factors,as

(A(p)) >((A(p))), >G(p),
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where the superscript t denotes the Cartier dual (cf. [9], 2). Hence
is equal to the composite of

i" i’
G(p) . A(p),et >A(p)------A(p),

where *=t" and A(p),t=t((t(A(p)))t). Now consider the finite
groups (G), (H) defining t(A(p)), (t(A(p)))t (respectively), and write

G=Spec A, H.= Spec B. Then B is the maximal tale subalgebra of

A (cf. [9], 1.4). Here we show that B is a D-direct summand of A.
In fact, as A, B are direct products of local rings, or this purpose we
may assume that A, B are local rings. As B is unramified over D,
it is, a discrete valuation ring. Consider the exact sequence o D-
modules OoBAoA/BO. As A is a free D-module, this sequence
splits if and only if A/B is a free D-module. Suppose that A/B is
not free. Then there exists an x e A such that x e B. and .x e B (for
some n>0), where . is a prime element of D (hence also a prime ele-
ment of B). As A is contained in A(R)K, and as the latter algebra
is a field since GK is reduced (cf. [4], Chap. III, 11, Theorem),
the above fact means that A contains the raction field o B. But this
implies that A is not of finite type as D-module. This is a contradic-
tion. Hence B is a D-direct summand of A. Now consider the D-
linear duals of A, B. The above act shows that ti" is closed im-
mersion. Hence to show that is a closed immersion it is enough to
show that * is a closed immersion. To show this, it is enough to show
that *’G(p)_A(p)t is a closed immersion, where the subscript R
indicates the scalar extension to R (in act, let (Spec A), (Spec B) be
the finite groups defining G(p), A(p),t (respectively), then by
Nakayama’s lemma we have the ollowing equivalences" =* is a closed

immersion@B-A is surjective@B (R) koA (R) k is surjective@B (R) k
-A(R) is surjective@* is a closed immersion). Now rom the act
that for finite group scheme G over D, Gt is determined by G(k) with
Gal (/k)-action (cf. [9], 1.4), we see that A(p),t is a connected-tale
p-divisible group. Since over an algebraically closed field of charac-
teristic p, the finite connected-tale groups are direct products o/’s
(cf. [4], Chap. 3, 14), rom [3], 4(d), Lemma 4.26, we see (A(p),t)
--(G,(p)) or suitable g, and we identiy these groups. Now let
a" G(p)o(G,(p)) be the morphism corresponding to the first 2actor.
Considered on the Tare-modules, the images o * and a are Z-direct
summands of T,(G(p)). Hence there exists a t e Autz T(G(p))
--Au%(/) T(G(p)) such that *=toz. From [9], 4.2, Theorem 4,
Corollary 1, is induced by an automorphism of (G(p)). As a is a

closed immersion, this completes the proof.
Added in proof. From the above theorem it ollows in global case

that if K is an algebraic number field of finite degree, L the cyclotomic
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Zfextension, and if A is an abelian variety defined over K with good
reduction at some prime dividing p, then the torsion part of A(L)is
finite. After he had completed this paper, the author was informed
that in the global case Serre proved a more general theorem by a dif-
ferent way.
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