26. On Odd Type Galois Extension with Involution of Semi-local Rings^{*)}

By Teruo KANZAKI and Kazuo KITAMURA Osaka City University, Osaka Kyoiku University (Comm. by Kenjiro Shoda, M. J. A., Feb. 12, 1975)

1. Introduction. In [3], the notion of odd type G-Galois extension with involution was defined as follows: If $A \supset B$ is a G-Galois extension and A has an involution $A \rightarrow A$; $a \sim \rightarrow \overline{a}$, which is compatible with every element σ of G, i.e. $\sigma(\overline{a}) = \overline{\sigma(a)}$ for all $a \in A$, then $A \supset B$ is called a G-Galois extension with involution. A G-Galois extension with involution $A \supset B$ is called odd type, if A has an element u satisfying the following conditions;

1) u is an invertible element in the fixed subring of the center of A by the involution,

2) a hermitian left *B*-module (A, b_t^u) defined by $b_t^u: A \times A \to B$; $(x, y) \longrightarrow t_G(ux\overline{y}) = \sum_{\sigma \in G} \sigma(ux\overline{y})$, is isometric to an orthogonal sum of $\langle 1 \rangle$ and a metabolic *B*-module.

If A, B are fields and $A \supset B$ is a G-Galois extension with involution, it was known that $A \supset B$ is odd type if and only if the order of G is odd. In this note, we want to extend this to semi-local rings. When $A \supset B$ is a G-Galois extension with involution of commutative rings, it is easily seen that an odd type G-Galois extension implies |G| =odd. For semi-local rings A and B, we shall show that the converse holds in the following cases:

I. The involution is trivial and $|B/\mathfrak{m}| \ge |G|$ for every maximal ideal m of B, where $|B/\mathfrak{m}|$ and |G| denote numbers of elements of B/\mathfrak{m} and G, respectively.

II. The involution is non-trivial and for each maximal ideal m of B the following conditions are satisfied;

1) $|B/\mathfrak{m}| \ge 2|G|$, 2) if $\overline{\mathfrak{m}} = \mathfrak{m}$, the involution induces a non-trivial one on $A/\mathfrak{m}A$.

III. *B* is a local ring with maximal ideal m, and the involution is non-trivial on *A* but induces a trivial one on A/mA. Furthermore, $|B/m| \ge |G|$ and B/m is either a field with the characteristic not 2 or a finite field. Throughout this paper, every ring is a commutative semilocal ring with identity and $A \supset B$ denotes a *G*-Galois extension with involution.

2. Galois extension with trivial involution. Lemma 1. Let

Dedicated to Professor Mutsuo Takahashi on his 60th birthday.

 $A \supset B$ be a G-Galois extension with trivial involution and B a field. If $|B| \ge |G|$, then we have the following;

1) there is a in A such that $A = B[a] = B \oplus Ba \oplus \cdots \oplus Ba^{n-1}$, n = |G|,

2) the minimal polynomial $F(X) = X^n + d_1 X^{n-1} + \cdots + d_n$ of a has a nonzero constant term; $d_n \neq 0$,

3) for a B-linear map $h: A \rightarrow B$ defined by h(1)=1, $h(a^i)=0$, $i=1,2,\dots,n-1$, there exists a unit u in A such that $h(x)=t_G(ux)$ $=b_t^i(u,x)$ for all $x \in A$.

Proof. Let e_1, e_2, \dots, e_m be the all primitive idempotents in A. Then $A = Ae_1 \oplus Ae_2 \oplus \cdots \oplus Ae_m$ is a direct sum of fields $Ae_i, i=1, 2, \cdots, m$. Put $G_1 = \{\sigma \in G ; \sigma(e_1) = e_1\}$ and take σ_i in G such that $\sigma_i(e_1) = e_i$, $i=1,2,\cdots,m$. Then we have that $G=\sigma_1G_1\cup\cdots\cup\sigma_mG_1, Ae_1\supset Be_1$ is a G_1 -Galois extension and $\sigma_i: Ae_1 \rightarrow Ae_i$ is a B-algebra isomorphism, $i=1,2,\dots,m$. Therefore, there is a separable and irreducible polynomial f(X) in B[X] such that $Ae_i \cong B[X]/(f(X)), i=1, 2, \dots, m$. We can chose $a_1=0, a_2, \dots, a_m$ in A such that $f(X+a_1), f(X+a_2), \dots$ $f(X+a_m)$ are mutually distinct. This is shown by induction as follows: Let K be an algebraic closure of B, and $\alpha_1, \alpha_2, \dots, \alpha_l$ roots of f(X) = 0in K, where $l = \deg f(X) = |G_1|$. Suppose $a_1 = 0, a_2, \dots, a_r$ has been taken for $1 \leq r < m$ so that $f(X+a_1)$, $f(X+a_2)$, \cdots , $f(X+a_r)$ are distinct polynomials. Since $|B| \ge |G| = |G_1| m = lm > lr$, we can chose a_{r+1} in B such that $\alpha_1 - a_{r+1} \neq \alpha_i - a_j$ for $i=1, 2, \dots, l$ and $j=1, 2, \dots, r$. Then we have $f(X+a_{r+1}) \neq f(X+a_j)$ for $j=1, 2, \dots, r$. Accordingly, we have distinct irreducible polynomials $f(X+a_1), f(X+a_2), \dots, f(X+a_m)$. Setting $F(X) = f(X+a_1)f(X+a_2)\cdots f(X+a_m)$, we obtain

$$B[X]/(F(X)) \cong B[X]/(f(X+a_1)) \oplus \cdots \oplus B[X]/(f(X+a_m))$$
$$\cong Ae_1 \oplus \cdots \oplus Ae_m = A$$

as B-algebras. Therefore, there is a in A such that A = B[a] and $F(X) = X^n + d_1 X^{n-1} + \cdots + d_n$ is the minimal polynomial of a. Since $f(X+a_i)$ is irreducible in B[X], the constant term d_n of F(X) is nonzero. Let $h: A \rightarrow B$ be a B-linear map defined by h(1)=1 and $h(a^i)=0$, $i=1,2,\cdots$, n-1. Since (A, b_i^1) is non degenerate, there is u in A such that $h(x) = b_i^1(x, u) = t_G(xu)$ for all $x \in A$. We now show that u is invertible in A. Let a be the annihilator ideal of u in A. Since $h(a)=b_i^1(a, u) = t_G(au)=0$, a is contained in Ker $h=Ba\oplus Ba^2\oplus\cdots\oplus Ba^{n-1}$. For any element $\alpha = b_1a + b_2a^2 + \cdots + b_{n-1}a^{n-1} \in a$, we have $(a^{n-1}+d_1a^{n-2}+\cdots + d_{n-1})\alpha = (a^n + d_1a^{n-1} + \cdots + d_{n-1}a)(b_1 + b_2a + \cdots + b_{n-1}a^{n-2}) = -d_nb_1 - d_nb_2a - \cdots - d_nb_{n-1}a^{n-2} \in a$, and so $-d_nb_1 = h(-d_nb_1 - d_nb_2a - \cdots - d_nb_{n-1}a^{n-2}) = 0$. But $d_n \neq 0$, therefore $b_1 = 0$ and $b_2a + \cdots + b_{n-1}a^{n-2} \in a$. Repeating this, we conclude $b_1 = b_2 = \cdots = b_{n-1} = 0$, i.e. $\alpha = 0$. Accordingly, we have $\alpha = 0$, namely, u is invertible in A.

Proposition 1. Let A, B be semi-local rings and $A \supset B$ a G-Galois extension with trivial involution. We assume that $|B/\mathfrak{m}| \geq |G|$ for every

maximal ideal m in B. Then we have the following;

1) there is a in A such that $1, a, \dots, a^{n-1}$ are B-free bases of A; $A = B \oplus Ba \oplus \dots \oplus Ba^{n-1}$, and the monic minimal polynomial F(X) of a has an invertible constant term,

2) for a B-linear map $h: A \rightarrow B$ defined by h(1)=0, $h(a^i)=0$, $i=1,2,\dots,n-1$, there exists a unit u in A such that $h(x)=t_G(ux)$ for all $x \in A$, and so (A, b_i^u) is non degenerate.

Proof. Let J be the radical of B, and e_1, e_2, \dots, e_t the all primitive idempotents in B/J. Then we have that $A/JA e_i \supset B/J e_i, i=1, 2, \dots, t$, and $A/JA = \sum_{i=1}^{t} A/JA e_i \supset B/J = \sum_{i=1}^{t} B/J e_i$ are G-Galois extensions. Since $B/J e_i$ is a field, by Lemma 1, there is α_i in $A/JA e_i$ such that $A/JA e_i = B/J e_i \oplus B/J e_i \alpha_i \oplus \cdots \oplus B/J e_i \alpha_i^{n-1}$ for $i=1,2,\cdots,t$, where n=|G|. Put $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_t$ in A/J, then we have A/JA = B/J $\oplus B/J \alpha \oplus \cdots \oplus B/J \alpha^{n-1}$. Let a be an element in A which is a representative of α . Then, by Nakayama's lemma, we have $A = B \oplus B \alpha \oplus \cdots$ $\oplus Ba^{n-1}$ and $1, a, \dots, a^{n-1}$ are B-free bases of A. Furthermore, by Lemma 1, the minimal polynomial $F(X) = X^n + d_1 X^{n-1} + \cdots + d_n$ of a in B[X] has an invertible constant term. Let $h: A \rightarrow B$ be a B-linear map defined by h(1)=1, $h(a^i)=0$, $i=1, 2, \dots, n-1$. Then there exists u in A such that $h(x) = b_t^1(u, x) = t_g(ux)$ for all $x \in A$. Now, considering at mod J, the element [u] in A/JA is a unit, because by Lemma 1 $[u]e_i$ is a unit in A/JA for every $i=1,2,\dots,t$. Therefore, u is a unit in A. Accordingly, (A, b_t^u) is non degenerate.

Theorem 1. Let A, B be semi-local rings and $A \supset B$ a G-Galois extension with trivial involution. We assume that for every maximal ideal m of $B, |B/m| \ge |G|$ and |G| is odd. Then $A \supset B$ is an odd type G-Galois extension.

Proof. By Proposition 1, A has an element a in A such that 1, a, a^2, \dots, a^{n-1} are B-free bases of A i.e. $A = B \oplus Ba \oplus \dots \oplus Ba^{n-1}$, and we can take a B-linear map $h: A \rightarrow B$ defined by $h(1)=1, h(a^i)=0$, $i=1,2,\dots,n-1$, and a unit u in A such that $h(x)=b_t^1(u,x)=t_g(ux)$ for all $x \in A$. Then we see that $(A, b_t^u) = B \perp (Ba \oplus \cdots \oplus Ba^{n-1})$ is non degenerate and so is $Ba \oplus \cdots \oplus Ba^{n-1}$. We now show that $Ba \oplus \cdots$ $\oplus Ba^{n-1}$ is metabolic. Put r=(n-1)/2. It is sufficient to show that $N = Ba \oplus \cdots \oplus Ba^r$ satisfies $N^{\perp} = N$ ([4], Lemma 1.2). Obviously $N^{\perp} \supset N$. To show $N^{\perp} \subset N$, it suffices to show $N^{\perp} \cap (Ba^{r+1} \oplus \cdots \oplus Ba^{n-1}) = 0$. Suppose that $c=b_1a^{r+1}+\cdots+b_ra^{n-1}\neq 0$ is in N^{\perp} and $b_1=\cdots=b_{k-1}=0$ but $b_k \neq 0$. Let $F(X) = X^{n-1} + d_1 X^{n-2} + \cdots + d_n$ be a minimal polynomial of a in B[X]. By Proposition 1, d_n is a unit in B. Put -G(X) $=X^{n-r-k}+d_1X^{n-r-k-1}+\cdots+d_{r-k}X$ and $H(X)=d_{r-k+1}X^{r+k}+\cdots+d_n$. Then we have $F(X) = -G(X)X^{r+k} + H(X)$ and $0 = F(a) = -G(a)a^{r+k}$ +H(a), where $-G(a)=d_{r-k}a+\cdots+d_{1}a^{n-r-k-1}+a^{n-r-k}$ is in N. By $c \in N^{\perp}$, we have

$$0 = b_t^u(c, G(a)) = t_G(ucG(a)) = h(cG(a))$$

= $h((b_k a^{r+k} + \dots + b_r a^{n-1})G(a))$
= $h((b_k + b_{k+1}a + \dots + b_r a^{n-1-r-k})a^{r+k}G(a))$
= $h((b_k + b_{k+1}a + \dots + b_r a^{n-1-r-k})H(a))$
= $h((b_k + b_{k+1}a + \dots + b_r a^{n-1-r-k})(d_{r-k+1}a^{r+k} + \dots + d_n))$
= $b_k d_n$.

Since d_n is invertible, $b_k=0$ is concluded. But it is a contradiction to $b_k \neq 0$. Therefore c=0, we obtain $N^{\perp}=N$, and $Ba \oplus \cdots \oplus Ba^{n-1}$ is a metabolic *B*-module. It is concluded that $A \supset B$ is odd type.

3. Galois extension with non-trivial involution. Lemma 2. Let A, B be semi-local rings and $A \supset B$ a G-Galois extension with non-trivial involution. If |G| = odd then the involution induces a non-trivial involution on B.

Proof. Put $A_0 = \{a \in A ; \overline{a} = a\}$. Suppose that the involution of A induces trivial on B. Denote by H the group consisting of the involution and the identity map. We shall show that $A \supset A_0 = A^H$ is an H-Galois extension. Let e_1, e_2, \dots, e_m be the all primitive idempotents in A. We suppose $\bar{e}_{2i-1} = e_{2i}$, $i=1, 2, \dots, r$ and $\bar{e}_j = e_j$, $j=2r+1, \dots, m$. Put $e'_i = e_{2i-1} + e_{2i}$. Then e'_i and e_j , $1 \leq i \leq r$, $2r+1 \leq j \leq m$, are orthogonal idempotents in A_0 and $1 = \sum_{i=1}^r e'_i + \sum_{j=2r+1}^m e_j$. For a j, $2r+1 \leq j \leq m$, Ae_j has no idempotents other than 0 and 1, and $Ae_j \supset A_0e_j$ is a separable extension and so $Ae_j \supset A_0e_j = (Ae_j)^H$ is an *H*-Galois extension. For an *i*, $1 \leq i \leq r$, we have $Ae'_i = A_0e_{2i-1} \oplus A_0e_{2i}$. Because, if *a* is in Ae'_i then $a_0 = ae_{2i-1} + \overline{a}e_{2i}$ and $a'_0 = \overline{a}e_{2i-1} + ae_{2i}$ are contained in A_0 , and so $a = a_0e_{2i-1}$ $+a'_0e_{2i}$ is contained in $A_0e_{2i-1}\oplus A_0e_{2i}$. Therefore, we have that Ae'_i $=A_0e_{2i-1}\oplus A_0e_{2i}\supset A_0e'_i$ is a trivial *H*-Galois extension. We conclude that $A = \sum_{i=1}^{r} Ae'_{i} \oplus \sum_{j=2r+1}^{m} Ae_{j} \supset A_{0} = \sum_{i=1}^{r} A_{0}e'_{i} \oplus \sum_{j=2r+1}^{m} A_{0}e_{j}$ is an H-Galois extension. Accordingly, $[A:B] = [A:A_0] \cdot [A_0:B] = |H| \cdot [A_0:B]$ is even. This is a contradiction to [A:B] = |G| = odd.

Theorem 2. Let A, B be semi-local rings and $A \supset B$ a G-Galois extension with non-trivial involution. We assume |G| = odd and $|B/\mathfrak{m}| \ge 2|G|$ for every maximal ideal \mathfrak{m} of B. If the involution of A induces a non-trivial involution on $A/\mathfrak{m} A$ for every maximal ideal \mathfrak{m} of B provided $\overline{\mathfrak{m}} = \mathfrak{m}$. Then $A \supset B$ is an odd type G-Galois extension.

Proof. For any maximal ideal m of B, if $m \neq \overline{m}$ then there is b in B such that $b \in m$ and $\overline{b} \notin m$, i.e. $b - \overline{b} \notin m$, and if $m = \overline{m}$ then $A/m A \supset B/m$ is a G-Galois extension with non-trivial involution, and so, by Lemma 2, there is b in B such that $b - \overline{b} \notin m$. Accordingly, by [2] Theorem 1.3 (f), we obtain that $B \supset B_0$ is an H-Galois extension. If $A \cong A_0 \otimes_{B_0} B$ is established, then $A \cong A_0 \otimes_{B_0} B \supset A_0 \otimes_{B_0} B_0 = A_0$ is an H-Galois extension. Now we show $A \cong A_0 \otimes_{B_0} B$. Let $x_1, x_2, \dots, x_n, y_1, y_2,$ \dots, y_n be an H-Galois system of B, then any a in A is expressed by $a = \sum_{i=1}^n t_H(ax_i)y_i$ in $A_0 \cdot B$. And for $\alpha = \sum_i a_i \otimes b_i$ in the Ker $(A_0 \otimes_{B_0} B)$

 $\rightarrow A_0 \cdot B$, we have $\alpha = \sum_i a_i \otimes b_i = \sum_{i,j} a_i \otimes t_H(b_i x_j) y_j = \sum_{i,j} a_i t_H(b_i x_j) \otimes y_j$ $=\sum_{i,j} t_H(a_i b_i x_j) \otimes y_j = 0.$ Therefore we get $A = A_0 \cdot B \cong A_0 \otimes_{B_0} B$. Since B is a semi-local ring, B_0 is also semi-local. Then B has a B_0 -free basis $\{1, v\}$; $B = B_0 \oplus B_0 v$, and so $A = A_0 \otimes_{B_0} B = A_0 \oplus A_0 v$ is A_0 -free module. For any maximal ideal \mathfrak{p}_0 of A_0 , there is a maximal ideal \mathfrak{p} of A such that $\mathfrak{p} \supset \mathfrak{p}_0 A$. Since $A \supset B$ is a G-Galois extension, for each σ in G, there is a in A such that $a - \sigma(a) \notin \mathfrak{p}$. a is expressed by $a = a_0 + a'_0 v$ in A $=A_0 \oplus A_0 v, \ a_0, \ a_0' \in A_0. \quad \text{Since} \ (a_0 - \sigma(a_0)) + (a_0' - \sigma(a_0'))v = a - \sigma(a) \in \mathfrak{p}, \ \text{we}$ have either $a_0 - \sigma(a_0) \notin \mathfrak{p}_0$ or $a'_0 - \sigma(a'_0) \notin \mathfrak{p}_0$. Therefore, $A_0 \supset A_0^G = B_0$ is a G-Galois extension. Accordingly, $A_0 \supset B_0$ is a G-Galois extension with trivial involution. For any maximal ideal \mathfrak{m}_0 of B_0 , there is a maximal ideal m of B, such that $\mathfrak{m} \cap B_0 = \mathfrak{m}_0$. Since $[B:B_0]=2$, we have $[B/\mathfrak{m}:$ $B_0/\mathfrak{m}_0] \leq 2$ and so $|B_0/\mathfrak{m}_0| \geq (1/2)|B/\mathfrak{m}| \geq |G|$. Therefore, by Theorem 1, there is a unit u in A_0 such that $(A_0, b_t^u) \cong \langle 1 \rangle_{B_0} \perp h_m$, where h_m is a metabolic B_0 -module. Since $A \cong B \otimes_{B_0} A_0$, we conclude (A, b_t^u) $=(B\otimes_{B_0}A_0, ib_t^u)\cong \langle 1\rangle_B \perp i^*h_m$, where *i* is the inclusion map $B \rightarrow A$ and i^*h_m becomes a metabolic *B*-module (cf. [1] or [4]). Accordingly, $A \supset B$ is an odd type G-Galois extension.

4. Galois extension with non-trivial involution over a local ring. In this section we consider a local ring B with maximal ideal m and a G-Galois extension with non-trivial involution $A \supset B$ such that the involution induces a trivial one on A/m A.

Theorem 3. Let $A \supset B$ be as above. We assume that the residue field B/\mathfrak{m} is either a field with the characteristic not 2 or a finite field. If |G| = odd and $|B/\mathfrak{m}| \geq |G|$, then $A \supset B$ is an odd type G-Galois extension with involution.

Proof. In the proof of Theorem 1, without considering the involution, we had a in A such that $A = B \oplus Ba \oplus \cdots \oplus Ba^{n-1}$ is B-free and the constant term of the minimal polynomial F(X) of a in B[X] is invertible. If the characteristic of B/\mathfrak{m} is not 2, then we can take a' $=(1/2)(a+\bar{a})$ in place of a. Then we have $\overline{a'}=a'$ and $A=B\oplus Ba'\oplus\cdots$ $\oplus Ba'^{n-1}$ is B-free. If characteristic of B/\mathfrak{m} is 2 and B/\mathfrak{m} is a finite field, then the map $B/\mathfrak{m} \rightarrow B/\mathfrak{m}$; $[x] \rightarrow [x]^2$ is an automorphism of B/\mathfrak{m} , therefore there exists c in A such that $[c]^2 = [a]$. Then we take $a' = c\bar{c}$ in place of a. We have also $\overline{a'}=a'$ and $A=B\oplus Ba'\oplus\cdots\oplus Ba'^{n-1}$ is B-Let $h: A \rightarrow B$ be a B-linear map defined by $h(1)=1, h(a^i)=0$, free. $i=1,2,\dots,n-1$. Then $h(x)=h(\bar{x})$ is satisfied for all x in A. The u which is determined by $h(x) = b_t^1(x, u) = t_g(\overline{u}x)$ for all x in A, is fixed Because, we have $b_t^1(\bar{x}, u) = h(\bar{x}) = \overline{h(x)} = \overline{t_G(\bar{u}x)}$ by the involution. $=t_G(u\bar{x})=b_t^1(\bar{x},\bar{u})$ for all x in A, and so we have $\bar{u}=u$ and (A, b_t^u) is a non degenerate hermitian B-module. Similarly to the proof of Theorem 1, we conclude this theorem.

References

- [1] H. Bass: Unitary algebraic K-theory. Springer Lecture Notes, 343, 57-265 (1972).
- [2] S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and cohomology of commutative rings. Memoir A. M. S. No. 52 (1965).
- [3] T. Kanzaki: On Galois extension with involution of rings (to appear).
- [4] M. Knebusch, A. Rosenberg, and R. Ware: Structure of Witt rings and quotients of abelian group rings. American J. Math., 94, 119–155 (1972).