# 26. On Odd Type Galois Extension with Involution of Semi-local Rings*' 

By Teruo Kanzaki and Kazuo Kitamura<br>Osaka City University, Osaka Kyoiku University<br>(Comm. by Kenjiro Shoda, m. J. A., Feb. 12, 1975)

1. Introduction. In [3], the notion of odd type G-Galois extension with involution was defined as follows: If $A \supset B$ is a $G$-Galois extension and $A$ has an involution $A \rightarrow A ; a \backsim \bar{a}$, which is compatible with every element $\sigma$ of $G$, i.e. $\sigma(\bar{a})=\overline{\sigma(a)}$ for all $a \in A$, then $A \supset B$ is called a $G$-Galois extension with involution. A $G$-Galois extension with involution $A \supset B$ is called odd type, if $A$ has an element $u$ satisfying the following conditions;
1) $u$ is an invertible element in the fixed subring of the center of $A$ by the involution,
2) a hermitian left $B$-module ( $A, b_{t}^{u}$ ) defined by $b_{t}^{u}: A \times A \rightarrow B$; $(x, y) \backsim t_{G}(u x \bar{y})=\sum_{\sigma \in G} \sigma(u x \bar{y})$, is isometric to an orthogonal sum of $\langle 1\rangle$ and a metabolic $B$-module.

If $A, B$ are fields and $A \supset B$ is a $G$-Galois extension with involution, it was known that $A \supset B$ is odd type if and only if the order of $G$ is odd. In this note, we want to extend this to semi-local rings. When $A \supset B$ is a $G$-Galois extension with involution of commutative rings, it is easily seen that an odd type $G$-Galois extension implies $|G|=$ odd. For semi-local rings $A$ and $B$, we shall show that the converse holds in the following cases:
I. The involution is trivial and $|B / \mathfrak{m}| \geqq|G|$ for every maximal ideal $m$ of $B$, where $|B / \mathfrak{m}|$ and $|G|$ denote numbers of elements of $B / \mathfrak{m}$ and $G$, respectively.
II. The involution is non-trivial and for each maximal ideal $\mathfrak{m}$ of $B$ the following conditions are satisfied;

1) $|B / \mathfrak{m}| \geqq 2|G|, 2)$ if $\bar{m}=\mathfrak{m}$, the involution induces a non-trivial one on $A / \mathrm{m} A$.
III. $B$ is a local ring with maximal ideal $\mathfrak{m}$, and the involution is non-trivial on $A$ but induces a trivial one on $A / \mathfrak{m} A$. Furthermore, $|B / \mathfrak{m}| \geqq|G|$ and $B / \mathfrak{m}$ is either a field with the characteristic not 2 or a finite field. Throughout this paper, every ring is a commutative semilocal ring with identity and $A \supset B$ denotes a $G$-Galois extension with involution.
2. Galois extension with trivial involution. Lemma 1. Let

[^0]$A \supset B$ be a G-Galois extension with trivial involution and $B$ a field. If $|B| \geqq|G|$, then we have the following;

1) there is $a$ in $A$ such that $A=B[a]=B \oplus B a \oplus \cdots \oplus B a^{n-1}, n=|G|$,
2) the minimal polynomial $F(X)=X^{n}+d_{1} X^{n-1}+\cdots+d_{n}$ of a has a nonzero constant term; $d_{n} \neq 0$,
3) for a B-linear map $h: A \rightarrow B$ defined by $h(1)=1, h\left(a^{i}\right)=0$, $i=1,2, \cdots, n-1$, there exists a unit $u$ in $A$ such that $h(x)=t_{G}(u x)$ $=b_{t}^{1}(u, x)$ for all $x \in A$.

Proof. Let $e_{1}, e_{2}, \cdots, e_{m}$ be the all primitive idempotents in $A$. Then $A=A e_{1} \oplus A e_{2} \oplus \cdots \oplus A e_{m}$ is a direct sum of fields $A e_{i}, i=1,2, \cdots, m$. Put $G_{1}=\left\{\sigma \in G ; \sigma\left(e_{1}\right)=e_{1}\right\}$ and take $\sigma_{i}$ in $G$ such that $\sigma_{i}\left(e_{1}\right)=e_{i}$, $i=1,2, \cdots, m$. Then we have that $G=\sigma_{1} G_{1} \cup \cdots \cup \sigma_{m} G_{1}, A e_{1} \supset B e_{1}$ is a $G_{1}$-Galois extension and $\sigma_{i}: A e_{1} \rightarrow A e_{i}$ is a $B$-algebra isomorphism, $i=1,2, \cdots, m$. Therefore, there is a separable and irreducible polynomial $f(X)$ in $B[X]$ such that $A e_{i} \cong B[X] /(f(X)), i=1,2, \cdots, m$. We can chose $a_{1}=0, a_{2}, \cdots, a_{m}$ in $A$ such that $f\left(X+a_{1}\right), f\left(X+a_{2}\right), \cdots$, $f\left(X+a_{m}\right)$ are mutually distinct. This is shown by induction as follows: Let $K$ be an algebraic closure of $B$, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}$ roots of $f(X)=0$ in $K$, where $l=\operatorname{deg} f(X)=\left|G_{1}\right|$. Suppose $a_{1}=0, a_{2}, \cdots, a_{r}$ has been taken for $1 \leqq r<m$ so that $f\left(X+a_{1}\right), f\left(X+a_{2}\right), \cdots, f\left(X+a_{r}\right)$ are distinct polynomials. Since $|B| \geqq|G|=\left|G_{1}\right| m=l m>l r$, we can chose $a_{r+1}$ in $B$ such that $\alpha_{1}-a_{r+1} \neq \alpha_{i}-a_{j}$ for $i=1,2, \cdots, l$ and $j=1,2, \cdots, r$. Then we have $f\left(X+a_{r+1}\right) \neq f\left(X+a_{j}\right)$ for $j=1,2, \cdots, r$. Accordingly, we have distinct irreducible polynomials $f\left(X+a_{1}\right), f\left(X+a_{2}\right), \cdots, f\left(X+a_{m}\right)$. Setting $F(X)=f\left(X+a_{1}\right) f\left(X+a_{2}\right) \cdots f\left(X+a_{m}\right)$, we obtain

$$
\begin{aligned}
B[X] /(F(X)) & \cong B[X] /\left(f\left(X+a_{1}\right)\right) \oplus \cdots \oplus B[X] /\left(f\left(X+a_{m}\right)\right) \\
& \cong A e_{1} \oplus \cdots \oplus A e_{m}=A
\end{aligned}
$$

as $B$-algebras. Therefore, there is $a$ in $A$ such that $A=B[a]$ and $F(X)$ $=X^{n}+d_{1} X^{n-1}+\cdots+d_{n}$ is the minimal polynomial of $a$. Since $f\left(X+a_{i}\right)$ is irreducible in $B[X]$, the constant term $d_{n}$ of $F(X)$ is nonzero. Let $h: A \rightarrow B$ be a $B$-linear map defined by $h(1)=1$ and $h\left(a^{i}\right)=0, i=1,2, \cdots$, $n-1$. Since $\left(A, b_{t}^{1}\right)$ is non degenerate, there is $u$ in $A$ such that $h(x)$ $=b_{t}^{1}(x, u)=t_{G}(x u)$ for all $x \in A$. We now show that $u$ is invertible in $A$. Let $\mathfrak{a}$ be the annihilator ideal of $u$ in $A$. Since $h(\mathfrak{a})=b_{t}^{1}(\mathfrak{a}, u)$ $=t_{G}(\mathfrak{a} u)=0, \mathfrak{a}$ is contained in $\operatorname{Ker} h=B a \oplus B a^{2} \oplus \cdots \oplus B a^{n-1}$. For any element $\alpha=b_{1} a+b_{2} a^{2}+\cdots+b_{n-1} a^{n-1} \in \mathfrak{a}$, we have $\left(a^{n-1}+d_{1} a^{n-2}+\cdots+\right.$ $\left.d_{n-1}\right) \alpha=\left(a^{n}+d_{1} a^{n-1}+\cdots+d_{n-1} a\right)\left(b_{1}+b_{2} a+\cdots+b_{n-1} a^{n-2}\right)=-d_{n} b_{1}-d_{n} b_{2} a$ $-\cdots-d_{n} b_{n-1} a^{n-2} \in \mathfrak{a}$, and so $-d_{n} b_{1}=h\left(-d_{n} b_{1}-d_{n} b_{2} a-\cdots-d_{n} b_{n-1} a^{n-2}\right)$ $=0$. But $d_{n} \neq 0$, therefore $b_{1}=0$ and $b_{2} a+\cdots+b_{n-1} a^{n-2} \in \mathfrak{a}$. Repeating this, we conclude $b_{1}=b_{2}=\cdots=b_{n-1}=0$, i.e. $\alpha=0$. Accordingly, we have $\mathfrak{a}=0$, namely, $u$ is invertible in $A$.

Proposition 1. Let $A, B$ be semi-local rings and $A \supset B a G$-Galois extension with trivial involution. We assume that $|B / \mathfrak{m}| \geqq|G|$ for every
maximal ideal $\mathfrak{m}$ in $B$. Then we have the following;

1) there is a in $A$ such that $1, a, \cdots, a^{n-1}$ are $B$-free bases of $A$; $A=B \oplus B a \oplus \cdots \oplus B a^{n-1}$, and the monic minimal polymomial $F(X)$ of a has an invertible constant term,
2) for a B-linear map $h: A \rightarrow B$ defined by $h(1)=0, h\left(a^{i}\right)=0$, $i=1,2, \cdots, n-1$, there exists a unit $u$ in $A$ such that $h(x)=t_{G}(u x)$ for all $x \in A$, and so $\left(A, b_{t}^{u}\right)$ is non degenerate.

Proof. Let $J$ be the radical of $B$, and $e_{1}, e_{2}, \cdots, e_{t}$ the all primitive idempotents in $B / J$. Then we have that $A / J A e_{i} \supset B / J e_{i}, i=1,2, \cdots, t$, and $A / J A=\sum_{i=1}^{t} A / J A e_{i} \supset B / J=\sum_{i=1}^{t} B / J e_{i}$ are $G$-Galois extensions. Since $B / J e_{i}$ is a field, by Lemma 1 , there is $\alpha_{i}$ in $A / J A e_{i}$ such that $A / J A e_{i}=B / J e_{i} \oplus B / J e_{i} \alpha_{i} \oplus \cdots \oplus B / J e_{i} \alpha_{i}^{n-1}$ for $i=1,2, \cdots, t$, where $n=|G|$. Put $\alpha=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{t}$ in $A / J$, then we have $A / J A=B / J$ $\oplus B / J \alpha \oplus \cdots \oplus B / J \alpha^{n-1}$. Let $a$ be an element in $A$ which is a representative of $\alpha$. Then, by Nakayama's lemma, we have $A=B \oplus B a \oplus \ldots$ $\oplus B a^{n-1}$ and $1, a, \cdots, a^{n-1}$ are $B$-free bases of $A$. Furthermore, by Lemma 1, the minimal polynomial $F(X)=X^{n}+d_{1} X^{n-1}+\cdots+d_{n}$ of $a$ in $B[X]$ has an invertible constant term. Let $h: A \rightarrow B$ be a $B$-linear map defined by $h(1)=1, h\left(a^{i}\right)=0, i=1,2, \cdots, n-1$. Then there exists $u$ in $A$ such that $h(x)=b_{t}^{1}(u, x)=t_{G}(u x)$ for all $x \in A$. Now, considering at $\bmod J$, the element $[u]$ in $A / J A$ is a unit, because by Lemma 1 [ $u$ ]e $e_{i}$ is a unit in $A / J A$ for every $i=1,2, \cdots, t$. Therefore, $u$ is a unit in $A$. Accordingly, $\left(A, b_{t}^{u}\right)$ is non degenerate.

Theorem 1. Let $A, B$ be semi-local rings and $A \supset B$ a G-Galois extension with trivial involution. We assume that for every maximal ideal $\mathfrak{m}$ of $B,|B / \mathfrak{m}| \geqq|G|$ and $|G|$ is odd. Then $A \supset B$ is an odd type $G$ Galois extension.

Proof. By Proposition 1, $A$ has an element $a$ in $A$ such that $1, a, a^{2}, \cdots, a^{n-1}$ are $B$-free bases of $A$ i.e. $A=B \oplus B a \oplus \cdots \oplus B a^{n-1}$, and we can take a $B$-linear map $h: A \rightarrow B$ defined by $h(1)=1, h\left(a^{i}\right)=0$, $i=1,2, \cdots, n-1$, and a unit $u$ in $A$ such that $h(x)=b_{t}^{1}(u, x)=t_{G}(u x)$ for all $x \in A$. Then we see that $\left(A, b_{t}^{u}\right)=B \perp\left(B a \oplus \cdots \oplus B a^{n-1}\right)$ is non degenerate and so is $B a \oplus \cdots \oplus B a^{n-1}$. We now show that $B a \oplus \ldots$ $\oplus B a^{n-1}$ is metabolic. Put $r=(n-1) / 2$. It is sufficient to show that $N=B a \oplus \cdots \oplus B a^{r}$ satisfies $N^{\perp}=N\left([4]\right.$, Lemma 1.2). Obviously $N^{\perp} \supset N$. To show $N^{\perp} \subset N$, it suffices to show $N^{\perp} \cap\left(B a^{r+1} \oplus \cdots \oplus B a^{n-1}\right)=0$. Suppose that $c=b_{1} a^{r+1}+\cdots+b_{r} a^{n-1} \neq 0$ is in $N^{\perp}$ and $b_{1}=\cdots=b_{k-1}=0$ but $b_{k} \neq 0$. Let $F(X)=X^{n-1}+d_{1} X^{n-2}+\cdots+d_{n}$ be a minimal polynomial of $a$ in $B[X]$. By Proposition 1, $d_{n}$ is a unit in $B$. Put $-G(X)$ $=X^{n-r-k}+d_{1} X^{n-r-k-1}+\cdots+d_{r-k} X$ and $H(X)=d_{r-k+1} X^{r+k}+\cdots+d_{n}$. Then we have $F(X)=-G(X) X^{r+k}+H(X)$ and $0=F(a)=-G(a) a^{r+k}$ $+H(a)$, where $-G(a)=d_{r-k} a+\cdots+d_{1} a^{n-r-k-1}+a^{n-r-k}$ is in $N$. By $c \in N^{\perp}$, we have

$$
\begin{aligned}
0 & =b_{t}^{u}(c, G(a))=t_{G}(u c G(a))=h(c G(a)) \\
& =h\left(\left(b_{k} a^{r+k}+\cdots+b_{r} a^{n-1}\right) G(a)\right) \\
& =h\left(\left(b_{k}+b_{k+1} a+\cdots+b_{r} a^{n-1-r-k}\right) a^{r+k} G(a)\right) \\
& =h\left(\left(b_{k}+b_{k+1} a+\cdots+b_{r} a^{n-1-r-k}\right) H(a)\right) \\
& =h\left(\left(b_{k}+b_{k+1} a+\cdots+b_{r} a^{n-1-r-k}\right)\left(d_{r-k+1} a^{r+k}+\cdots+d_{n}\right)\right) \\
& =b_{k} d_{n} .
\end{aligned}
$$

Since $d_{n}$ is invertible, $b_{k}=0$ is concluded. But it is a contradiction to $b_{k} \neq 0$. Therefore $c=0$, we obtain $N^{\perp}=N$, and $B a \oplus \cdots \oplus B a^{n-1}$ is a metabolic $B$-module. It is concluded that $A \supset B$ is odd type.
3. Galois extension with non-trivial involution. Lemma 2. Let $A, B$ be semi-local rings and $A \supset B$ a G-Galois extension with nontrivial involution. If $|G|=o d d$ then the involution induces a nontrivial involution on $B$.

Proof. Put $A_{0}=\{a \in A ; \bar{a}=a\}$. Suppose that the involution of $A$ induces trivial on $B$. Denote by $H$ the group consisting of the involution and the identity map. We shall show that $A \supset A_{0}=A^{H}$ is an $H$ Galois extension. Let $e_{1}, e_{2}, \cdots, e_{m}$ be the all primitive idempotents in $A$. We suppose $\bar{e}_{2 i_{-1}}=e_{2 i}, i=1,2, \cdots, r$ and $\bar{e}_{j}=e_{j}, j=2 r+1, \cdots, m$. Put $e_{i}^{\prime}=e_{2 i-1}+e_{2 i}$. Then $e_{i}^{\prime}$ and $e_{j}, 1 \leqq i \leqq r, 2 r+1 \leqq j \leqq m$, are orthogonal idempotents in $A_{0}$ and $1=\sum_{i=1}^{r} e_{i}^{\prime}+\sum_{j=2 r+1}^{m} e_{j}$. For a $j, 2 r+1 \leqq j \leqq m$, $A e_{j}$ has no idempotents other than 0 and 1 , and $A e_{j} \supset A_{0} e_{j}$ is a separable extension and so $A e_{j} \supset A_{0} e_{j}=\left(A e_{j}\right)^{H}$ is an $H$-Galois extension. For an $i, 1 \leqq i \leqq r$, we have $A e_{i}^{\prime}=A_{0} e_{2 i-1} \oplus A_{0} e_{2 i}$. Because, if $a$ is in $A e_{i}^{\prime}$ then $a_{0}=a e_{2 i-1}+\bar{a} e_{2 i}$ and $a_{0}^{\prime}=\bar{a} e_{2 i-1}+a e_{2 i}$ are contained in $A_{0}$, and so $a=a_{0} e_{2 i-1}$ $+a_{0}^{\prime} e_{2 i}$ is contained in $A_{0} e_{2 i-1} \oplus A_{0} e_{2 i}$. Therefore, we have that $A e_{i}^{\prime}$ $=A_{0} e_{2 i-1} \oplus A_{0} e_{2 i} \supset A_{0} e_{i}^{\prime}$ is a trivial $H$-Galois extension. We conclude that $A=\sum_{i=1}^{r} A e_{i}^{\prime} \oplus \sum_{j=2 r+1}^{m} A e_{j} \supset A_{0}=\sum_{i=1}^{r} A_{0} e_{i}^{\prime} \oplus \sum_{j=2 r+1}^{m} A_{0} e_{j}$ is an $H$-Galois extension. Accordingly, $[A: B]=\left[A: A_{0}\right] \cdot\left[A_{0}: B\right]=|H| \cdot\left[A_{0}: B\right]$ is even. This is a contradiction to $[A: B]=|G|=$ odd.

Theorem 2. Let $A, B$ be semi-local rings and $A \supset B$ a G-Galois extension with non-trivial involution. We assume $|G|=o d d$ and $|B / \mathfrak{m}|$ $\geqq 2|G|$ for every maximal ideal $\mathfrak{m}$ of $B$. If the involution of $A$ induces a non-trivial involution on $A / \mathfrak{m} A$ for every maximal ideal $\mathfrak{m}$ of $B$ provided $\overline{\mathfrak{m}}=\mathfrak{m}$. Then $A \supset B$ is an odd type $G$-Galois extension.

Proof. For any maximal ideal $\mathfrak{m}$ of $B$, if $\mathfrak{m} \neq \overline{\mathfrak{m}}$ then there is $b$ in $B$ such that $b \in \mathfrak{m}$ and $\bar{b} \notin \mathfrak{m}$, i.e. $b-\bar{b} \notin \mathfrak{n}$, and if $\mathfrak{m}=\overline{\mathfrak{m}}$ then $A / \mathfrak{m} A$ $\supset B / \mathfrak{m}$ is a $G$-Galois extension with non-trivial involution, and so, by Lemma 2, there is $b$ in $B$ such that $b-\bar{b} \notin \mathfrak{m}$. Accordingly, by [2] Theorem 1.3 (f), we obtain that $B \supset B_{0}$ is an $H$-Galois extension. If $A \cong A_{0} \otimes_{B_{0}} B$ is established, then $A \cong A_{0} \otimes_{B_{0}} B \supset A_{0} \otimes_{B_{0}} B_{0}=A_{0}$ is an $H$ Galois extension. Now we show $A \cong A_{0} \otimes_{B_{0}} B$. Let $x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}$, $\cdots, y_{n}$ be an $H$-Galois system of $B$, then any $a$ in $A$ is expressed by $a=\sum_{i=1}^{n} t_{H}\left(a x_{i}\right) y_{i}$ in $A_{0} \cdot B$. And for $\alpha=\sum_{i} a_{i} \otimes b_{i}$ in the $\operatorname{Ker}\left(A_{0} \otimes_{B_{0}} B\right.$
$\rightarrow A_{0} \cdot B$, we have $\alpha=\sum_{i} a_{i} \otimes b_{i}=\sum_{i, j} a_{i} \otimes t_{H}\left(b_{i} x_{j}\right) y_{j}=\sum_{i, j} a_{i} t_{H}\left(b_{i} x_{j}\right) \otimes y_{j}$ $=\sum_{i, j} t_{H}\left(a_{i} b_{i} x_{j}\right) \otimes y_{j}=0$. Therefore we get $A=A_{0} \cdot B \cong A_{0} \otimes_{B_{0}} B$. Since $B$ is a semi-local ring, $B_{0}$ is also semi-local. Then $B$ has a $B_{0}$-free basis $\{1, v\} ; B=B_{0} \oplus B_{0} v$, and so $A=A_{0} \otimes_{B_{0}} B=A_{0} \oplus A_{0} v$ is $A_{0}$-free module. For any maximal ideal $\mathfrak{p}_{0}$ of $A_{0}$, there is a maximal ideal $\mathfrak{p}$ of $A$ such that $\mathfrak{p} \supset \mathfrak{p}_{0} A$. Since $A \supset B$ is a $G$-Galois extension, for each $\sigma$ in $G$, there is $a$ in $A$ such that $a-\sigma(a) \notin \mathfrak{p} . \quad a$ is expressed by $a=a_{0}+a_{0}^{\prime} v$ in $A$ $=A_{0} \oplus A_{0} v, a_{0}, a_{0}^{\prime} \in A_{0}$. Since $\left(a_{0}-\sigma\left(a_{0}\right)\right)+\left(a_{0}^{\prime}-\sigma\left(a_{0}^{\prime}\right)\right) v=a-\sigma(a) \notin \mathfrak{p}$, we have either $a_{0}-\sigma\left(a_{0}\right) \notin \mathfrak{p}_{0}$ or $a_{0}^{\prime}-\sigma\left(a_{0}^{\prime}\right) \notin \mathfrak{p}_{0}$. Therefore, $A_{0} \supset A_{0}^{G}=B_{0}$ is a $G$-Galois extension. Accordingly, $A_{0} \supset B_{0}$ is a $G$-Galois extension with trivial involution. For any maximal ideal $\mathfrak{m}_{0}$ of $B_{0}$, there is a maximal ideal $\mathfrak{m}$ of $B$, such that $\mathfrak{m} \cap B_{0}=\mathfrak{m}_{0}$. Since $\left[B: B_{0}\right]=2$, we have $[B / \mathfrak{m}$ : $\left.B_{0} / \mathfrak{m}_{0}\right] \leqq 2$ and so $\left|B_{0} / \mathfrak{m}_{0}\right| \geqq(1 / 2)|B / \mathfrak{m}| \geqq|G|$. Therefore, by Theorem 1, there is a unit $u$ in $A_{0}$ such that $\left(A_{0}, b_{t}^{u}\right) \cong\langle 1\rangle_{B_{0}} \perp h_{m}$, where $h_{m}$ is a metabolic $B_{0}$-module. Since $A \cong B \otimes_{B_{0}} A_{0}$, we conclude ( $A, b_{t}^{u}$ ) $=\left(B \otimes_{B_{0}} A_{0}, i b_{t}^{u}\right) \cong\langle 1\rangle_{B} \perp i^{*} h_{m}$, where $i$ is the inclusion map $B \rightarrow A$ and $i^{*} h_{m}$ becomes a metabolic $B$-module (cf. [1] or [4]). Accordingly, $A \supset B$ is an odd type $G$-Galois extension.
4. Galois extension with non-trivial involution over a local ring. In this section we consider a local ring $B$ with maximal ideal $\mathfrak{m}$ and a $G$-Galois extension with non-trivial involution $A \supset B$ such that the involution induces a trivial one on $A / \mathfrak{m} A$.

Theorem 3. Let $A \supset B$ be as above. We assume that the residue field $B / \mathfrak{m}$ is either a field with the characteristic not 2 or a finite field. If $|G|=$ odd and $|B / \mathfrak{m}| \geqq|G|$, then $A \supset B$ is an odd type $G$-Galois extension with involution.

Proof. In the proof of Theorem 1, without considering the involution, we had $a$ in $A$ such that $A=B \oplus B a \oplus \cdots \oplus B a^{n-1}$ is $B$-free and the constant term of the minimal polynomial $F(X)$ of $a$ in $B[X]$ is invertible. If the characteristic of $B / \mathfrak{m}$ is not 2 , then we can take $a^{\prime}$ $=(1 / 2)(a+\bar{a})$ in place of $a$. Then we have $\overline{a^{\prime}}=a^{\prime}$ and $A=B \oplus B a^{\prime} \oplus \ldots$ $\oplus B a^{\prime n-1}$ is $B$-free. If characteristic of $B / \mathfrak{m}$ is 2 and $B / \mathfrak{m}$ is a finite field, then the $\operatorname{map} B / \mathfrak{m} \rightarrow B / \mathfrak{m} ;[x] \sim[x]^{2}$ is an automorphism of $B / \mathfrak{m}$, therefore there exists $c$ in $A$ such that $[c]^{2}=[\alpha]$. Then we take $\alpha^{\prime}=c \bar{c}$ in place of $a$. We have also $\overline{a^{\prime}}=a^{\prime}$ and $A=B \oplus B a^{\prime} \oplus \cdots \oplus B a^{\prime n-1}$ is $B$ free. Let $h: A \rightarrow B$ be a $B$-linear map defined by $h(1)=1, h\left(a^{i}\right)=0$, $i=1,2, \cdots, n-1$. Then $\overline{h(x)}=h(\bar{x})$ is satisfied for all $x$ in $A$. The $u$ which is determined by $h(x)=b_{t}^{1}(x, u)=t_{G}(\bar{u} x)$ for all $x$ in $A$, is fixed by the involution. Because, we have $b_{t}^{1}(\bar{x}, u)=h(\bar{x})=\overline{h(x)}=\overline{t_{G}(\bar{u} x)}$ $=t_{G}(u \bar{x})=b_{t}^{1}(\bar{x}, \bar{u})$ for all $x$ in $A$, and so we have $\bar{u}=u$ and $\left(A, b_{t}^{u}\right)$ is a non degenerate hermitian $B$-module. Similarly to the proof of Theorem 1 , we conclude this theorem.

## References

[1] H. Bass: Unitary algebraic K-theory. Springer Lecture Notes, 343, 57-265 (1972).
[2] S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and cohomology of commutative rings. Memoir A. M. S. No. 52 (1965).
[3] T. Kanzaki: On Galois extension with involution of rings (to appear).
[4] M. Knebusch, A. Rosenberg, and R. Ware: Structure of Witt rings and quotients of abelian group rings. American J. Math., 94, 119-155 (1972).


[^0]:    *) Dedicated to Professor Mutsuo Takahashi on his 60th birthday.

