24. The Local Maximum Modulus Principle for Function Spaces

By Yukio HIRASHITA*) and Junzo WADA**)

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1975)

The local maximum modulus principle for function algebras due to H. Rossi [5] is well-known. The purpose of this paper is to consider the principle for function spaces, more correctly speaking, for function systems. In § 1, for any function system \mathcal{F} , we define the $LMM(\mathcal{F})$ boundary which plays the same rôle as the Shilov boundary in the Rossi's principle. In §§ 2 and 3, properties of the $LMM(\mathcal{F})$ -boundary and relations between the Rossi's principle and ours are discussed.

§ 1. The *LMM*-boundary. Let X be a compact Hausdorff space. For any subset S in X, \dot{S} denotes the topological boundary of S, i.e., $\dot{S}=\bar{S}\backslash S^i$, where \bar{S} and S^i are the closure and the interior of S in X respectively.

Let \mathcal{F} be a family of complex-valued bounded continuous functions defined on subsets of X. We denote the domain of f by D(f) $(f \in \mathcal{F})$. \mathcal{F} is said to be a *function system* on X if \mathcal{F} has the following properties:

(1) If $f, g \in \mathcal{F}$ and α, β are complex numbers, then $\alpha f + \beta g$ (defined on $D(f) \cap D(g)$) belongs to \mathcal{F} .

(2) $\mathcal{F}_X = \{f \in \mathcal{F} : D(f) = X\}$ separates points of X and contains constant functions.

Let \mathcal{F} be a function system on X. We will say that a subset E of X satisfies the $LMM(\mathcal{F})$ -principle if $||f||_{\dot{U}} = ||f||_U$ for any open subset U in X with $U \cap E = \phi$ and for any $f \in \mathcal{F}$ with $D(f) \supset \overline{U}$, where $||f||_P = \sup_{x \in \mathcal{P}} |f(x)|$ for any $P(||f||_{\phi} = 0$ for the empty set ϕ).

We shall first show that there exists the smallest one F_0 among non-void¹⁾ closed subsets which satisfy the $LMM(\mathcal{F})$ -principle. Such set F_0 is called the $LMM(\mathcal{F})$ -boundary and we write $F_0 = LMM(\mathcal{F})$.

Theorem 1.1. For any function system \mathcal{F} , there exists the $LMM(\mathcal{F})$ -boundary.

Proof. Let $\mathcal{P} = \{F_{\lambda}\}_{\lambda \in \Lambda^2}$ be the family of all (non-void) closed subsets in X which satisfy the $LMM(\mathcal{P})$ -principle. We define a partial order \succ in Λ as follows: $\lambda \succ \mu$ if and only if $F_{\lambda} \supset F_{\mu}$. It is not hard to

^{*)} Kyushu University, Fukuoka.

^{**)} Waseda University, Tokyo.

¹⁾ The empty set ϕ does not satisfy the $LMM(\mathcal{F})$ -principle.

²⁾ \mathcal{P} is non-void, because $\mathcal{P} \ni X$.

see that any totally ordered subset of Λ has a lower bound. Hence Zorn's lemma guarantees that \mathcal{P} has a minimal one F_0 . To complete our proof we verify that F_0 is the smallest one of \mathcal{P} . The proof is similar to Bear's [1]. Let a closed subset B have the $LMM(\mathcal{F})$ -principle. Then we shall show that $F_0 \subset B$. Suppose that $F_0 \subset B$, then there exist $x_0 \in F_0 \setminus B$, and a non-void open subset $V (\ni x_0)$ with $V \cap B = \phi$. Since \mathcal{F}_X separates points in X, the ordinary topology on X coincides with the weak topology on X with respect to \mathcal{F}_X . From this we can assume that V is of the form $\{x \in X : |f_i(x) - f_i(x_0)| < \epsilon\}$, where $f_i \in \mathcal{F}_X$ (i=1,2, $\dots, n)$ and $\epsilon > 0$. By setting $g_i = f_i - f_i(x_0) (\in \mathcal{F}_X)$, we have $V = \{x \in X :$ $|g_i(x)| < \epsilon$, $i=1,2,\dots,n\}$. If $T = F_0 \setminus V$, by the minimality of F_0 , T fails to satisfy the principle. Hence there exist an open subset U and $f \in \mathcal{F}$ such that $U \cap T = \phi$, $D(f) \supset \overline{U}$ and $\|f\|_{\dot{U}} < \|f\|_U$. We can here choose a sufficiently large number m such that g=mf satisfies the following:

 $||g_1||_U + ||g_2||_U + \cdots + ||g_n||_U + ||g||_U \leq ||g||_U.$

Now let α be any complex number with $|\alpha|=1$. Then for any $x \in U \cap V$ and any $k \in \{1, 2, \dots, n\}$

$$|g(x) + \alpha g_k(x)| \leq |g(x)| + |g_k(x)| < ||g||_U + \varepsilon.$$

If $x \in \dot{U}$, then

$$|g(x) + \alpha g_{k}(x)| \leq ||g||_{\dot{U}} + ||g_{k}||_{U} < ||g||_{U}.$$

If we set $W = U \setminus F_0$, then $\dot{W} \subset \dot{U} \cup \{U \cap V\}$ and $D(g + \alpha g_k) \supset \overline{W}$, and by two inequalities above,

$$\|g + \alpha g_k\|_{\dot{w}} < \|g\|_U + \varepsilon$$

Since $W \cap F_0 = \phi$, by the $LMM(\mathcal{F})$ -principle,

 $\|g+\alpha g_k\|_W = \|g+\alpha g_k\|_W < \|g\|_U + \varepsilon.$

It follows that $\|g + \alpha g_k\|_U < \|g\|_U + \varepsilon$, because $\overline{U} = \dot{U} \cup U = \dot{U} \cup (U \setminus F_0)$ $\cup (U \cap F_0) = \dot{U} \cup W \cup (U \cap F_0) \subset \dot{U} \cup W \cup (U \cap V).$

We here take any $t \in M_g = \{x \in \overline{U} : |g(x)| = ||g||_U\}$, then there exists an α ($|\alpha|=1$) such that

$$|g(t) + \alpha g_k(t)| = |g(t)| + |g_k(t)|$$

Hence we have

$$\begin{aligned} \|g\|_{U} + |g_{k}(t)| &= |g(t)| + |g_{k}(t)| = |g(t) + \alpha g_{k}(t)| \\ &\leq \|g + \alpha g_{k}\|_{U} < \|g\|_{U} + \varepsilon. \end{aligned}$$

It implies that $|g_k(t)| < \varepsilon$ $(k=1,2,\dots,n)$, and so $M_g \subset V$. Since $M_g \subset U$, $M_g \subset U \cap V \equiv S$. It follows that $||g||_{\dot{s}} < ||g||_s$ and $S \cap B \subset V \cap B = \phi$. This shows that B fails to satisfy the $LMM(\mathcal{F})$ -principle. It concludes that F_0 is the $LMM(\mathcal{F})$ -boundary.

§ 2. The $LMM(\mathcal{F})$ -boundary and the Shilov boundary. A linear subspace A of C(X) is said to be a function space on X if A separates points of X and contains constant functions.

Let A be a function space on X. A function f defined on $S (\subset X)$

is said to be (A-) holomorphic on S if for any $x \in S$ there exists a neighborhood V of x in X such that f can be approximated uniformly on $S \cap V$ by functions in A. We denote the set of all holomorphic functions on S by $\mathcal{H}_A(S)$. Let $\mathcal{H}'_A(S)$ denote the set of all functions on S which can be approximated uniformly on S by functions of A.

For a function space A on X, the following three are function systems on X: (1) $\mathcal{F}(A) = A$, (2) $\mathcal{F}(\mathcal{H}'_A) = \bigcup_{S \subset X} \mathcal{H}'_A(S)$ and (3) $\mathcal{F}(\mathcal{H}_A) = \bigcup_{S \subset X} \mathcal{H}_A(S)$.

Theorem 2.1. $\partial_A \subset LMM(\mathcal{F}(A)) = LMM(\mathcal{F}(\mathcal{H}'_A)) \subset LMM(\mathcal{F}(\mathcal{H}_A))$, where ∂_A denotes the Shilov boundary for A.

Proof. It suffices to prove only that $\partial_A \subset LMM(\mathcal{F}(A))$. We set $U = X \setminus LMM(\mathcal{F}(A))$. Then for any $f \in A$, $||f||_{\dot{U}} = ||f||_U$. Since $\dot{U} \subset LMM(\mathcal{F}(A))$, we have $||f||_X = \max \{||f||_{X \setminus U}, ||f||_{\dot{U}}\} = ||f||_{LMM(\mathcal{F}(A))}$. This shows $\partial_A \subset LMM(\mathcal{F}(A))$.

A similar result as Corollary 2.3 of Rickart [4] can be obtained as follows.

Theorem 2.2. If $U \cap LMM(\mathcal{F}(\mathcal{H}_A)) = \phi$ for a non-void open subset U in X and $h \in \mathcal{H}_A(U)$, then there exists $\delta \in \dot{U}$ such that $||h||_U = ||h||_{U \cap V}$ for any open neighborhood V of δ .

§ 3. Singular points. Let A be a function space on X and $\varphi: X \to A^*$ denote the canonical mapping from X to the dual space A^* with weak*-topology. We can identify X and $\varphi(X)$ in the usual sense: $\langle \varphi(x), f \rangle = f(x)$ for $x \in X, f \in A$. For $S \subset X, \varphi(\hat{S})$ denotes the (w^*) -closed convex hull of $\varphi(S)$. We see that $\varphi(X)$ equals the state space $\{L \in A^*: L(1)=1=||L||\}$ (cf. [3]). We write \hat{S} in the place of $\varphi(\hat{S})$. A point $x \in X$ is said to be singular if there exists an open neighborhood V of x in X such that $x \in \exp \hat{V}$, where $\exp \hat{V}$ denotes the set of all extreme points of \hat{V} . We denote by S_A the set of all singular points.

Theorem 3.1. LMM($\mathcal{F}(A)$) is equal to the closure \overline{S}_A of S_A .

Proof. (1) If $LMM(\mathcal{F}(A)) \subset \overline{S}_A$, then \overline{S}_A fails to have the $LMM(\mathcal{F}(A))$ -principle. Hence there are an open subset U and an $f \in A$ such that $U \cap \overline{S}_A = \phi$ and $||f||_{\dot{U}} < ||f||_U$. Since f can be considered as a continuous affine function on $\hat{U}(\subset A^*)$, there exists $x_0 \in \operatorname{ex} \hat{U}$ such that $|f(x_0)| = ||f||_{\hat{U}} = ||f||_U$. Since $x_0 \in \overline{U}$ (cf. [3]) and $||f||_{\dot{U}} < ||f||_U$, we have $x_0 \in \dot{U}$, and so $x_0 \in U$. It implies $x_0 \in S_A$, which contradicts that $U \cap S_A = \phi$.

(2) If $S_A \subset LMM(\mathcal{F}(A))$, we choose $x_0 \in S_A \setminus LMM(\mathcal{F}(A))$. Then there exists an open subset U such that $U \ni x_0$ and $\exp(\hat{U} \ni x_0)$. Let $V = U \setminus LMM(\mathcal{F}(A))$, then $V \rightleftharpoons \phi$ and $V \cap LMM(\mathcal{F}(A)) = \phi$. We can here show that $\dot{V} \subset F \equiv \dot{U} \cup \{ \overline{U} \cap LMM(\mathcal{F}(A)) \}$ and $F \ni x_0$. Now suppose that $x_0 \in \hat{V}$, then $x_0 \in \hat{V} \subset \hat{F} \subset \hat{U} = \hat{U}$. Since $x_0 \in \exp(\hat{U})$, we have $x_0 \in \exp(\hat{F})$ and so $x_0 \in F$. This contradiction shows $x_0 \in \hat{V}$. Since $x_0 \in \exp(\hat{U})$, there exists

No. 1]

Y. HIRASHITA and J. WADA

an $f \in A$ such that $||f||_{\dot{v}} < |f(x_0)|$ ([3]). From this, $||f||_{\dot{v}} = ||f||_{\dot{v}} < |f(x_0)| \le ||f||_{v}.$

This is a contradiction, because $V \cap LMM(\mathcal{F}(A)) = \phi$.

When $\bar{S}_A = \partial_A$, we have

Theorem 3.2. If $\overline{S}_A = \partial_A$, then $\partial_A = LMM(\mathcal{F}(\mathcal{H}_A))$.

Proof. Since $\partial_A \subset LMM(\mathcal{F}(\mathcal{H}_A))$ by Theorem 2.1, we have to show only that $\partial_A \supset LMM(\mathcal{F}(\mathcal{H}_A))$. For any open subset U in X with $U \cap \partial_A = \phi$ and for any $h \in \mathcal{H}_A(\overline{U})$, B denotes the function space generated by $\{A \mid \overline{U}, h\}$. Assume that $U \cap \partial_B \neq \phi$, where ∂_B is the Choquet boundary for B. We choose $x_0 \in U \cap \partial_B$. Then for any open subset $V \ni x_0$, there exists $f \in B$ such that $||f||_{\overline{U}\setminus V} < |f(x_0)|$. Since h is holomorphic, h is approximated uniformly by functions in A on some open subset W(U $\supset \overline{W} \supset W \ni x_0$). Hence $||f||_{\overline{U}\setminus W} < |f(x_0)|$ for some $f \in B$. It follows that $f \mid \overline{W} \in \mathcal{H}'_A(\overline{W})$ and $||f||_{W} \leq ||f||_{\overline{U}\setminus W} < |f(x_0)| \leq ||f||_W$. Since $W \cap \partial_A = \phi$ and $\partial_A = \overline{S}_A = LMM(\mathcal{F}(\mathcal{H}'_A))$ by Theorems 2.1 and 3.1, this is a contradiction. This shows $U \cap \partial_B = \phi$, that is, $\partial_B \subset U$. It implies that $||h||_U = ||h|| \partial_B$ $\leq ||h||_U \leq ||h||_U$, and so ∂_A satisfies the $LMM(\mathcal{F}(\mathcal{H}_A))$ -principle. Thus the theorem is proved.

Now, let $x_0 \in S_A$. Then we see that there exists an open subset $W(\ni x_0)$ in X which has the following property: for any open neighborhood U of x_0 with $U \subset W$, there is an $f \in A$ such that $U \supset \{x \in \overline{W} : f(x) = \|f\|_W\}$. By this fact and the local peak set theorem ([5] or [2], p. 91), the Rossi's principle can be written as follows.

Theorem 3.3. Let A be a function algebra on the maximal ideal space M_A . Then $\partial_A = \overline{S}_A$.

References

- H. S. Bear: The Silov boundary for a linear space of continuous functions. Amer. Math. Monthly, 68, 483-485 (1961).
- [2] T. Gamelin: Uniform Algebras. Prentice-Hall, Englewood Cliffs N. J. (1969).
- [3] R. R. Phelps: Lectures on Choquet's Theorem. Van Nostrand, Princeton (1966).
- [4] C. E. Rickart: Analytic phenomena in general function algebras. Pacific J. Math., 18, 361-377 (1966).
- [5] H. Rossi: The local maximum modulus principle. Ann. of Math., 72, 1-11 (1960).