22. On an Asymptotic Property of Spectra of a Random Difference Operator

By Masatoshi Fukushima, Hideo Nagai, and Shintaro Nakao Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1975)

We consider a discrete version of the Schrödinger operator with a random potential q:

$$(1) \qquad (H^{\omega}u)(a) = -(H^{0}u)(a) + q(a, \omega)u(a), \qquad a \in Z^{\nu}.$$

Here u is a function on the ν -dimensional lattice space Z^{ν} , H^{0} is a second order difference operator defined by

(2)
$$(H^{0}u)(a) = \frac{\sigma^{2}}{2} \sum_{i=1}^{\nu} \{u(a_{1}, \dots, a_{i}-1, \dots, a_{\nu}) - 2u(a) + u(a_{1}, \dots, a_{i}+1, \dots, a_{\nu})\}, \quad a \in \mathbb{Z}^{\nu},$$

with a positive constant σ and $\{q(a,\omega); a \in Z^{\flat}\}$ is a family of random variables defined on a certain probability space (Ω, \mathcal{B}, P) . The only assumption we make on random variables $\{q(a,\omega); a \in Z^{\flat}\}$ is that they form a stationary random field. Their common distribution function will be denoted by F(x):

(3)
$$F(x) = P(q(0) \le x), \quad x \in \mathbb{R}^1.$$

Denote by $L^2(Z^{\nu})$ the space of all square summable functions on Z^{ν} with inner product $(u,v)=\sum_{a\in Z^{\nu}}u(a)v(a)$. Since H^0 is a bounded symmetric operator on $L^2(Z^{\nu})$, it is easy to see that the operator H^{ω} restricted to the space $C_0(Z^{\nu})$ of functions with finite supports is essentially self-adjoint and that its self-adjoint extension A^{ω} can be described as follows:

$$\begin{cases} \mathcal{D}(A^{\omega}) = \{ u \in L^{2}(Z^{\nu}) ; H^{\omega}u \in L^{2}(Z^{\nu}) \} \\ A^{\omega}u = H^{\omega}u \qquad u \in \mathcal{D}(A^{\omega}). \end{cases}$$

Let $\{E_{\lambda}^{w}; \lambda \in R^{1}\}$ be the resolution of the identity associated with $A^{w}: A^{w} = \int_{-\infty}^{\infty} \lambda dE_{\lambda}^{w}$.

It turns out that $(E_{\lambda}^{\omega}I_0, I_0)$ is measurable in $\omega \in \Omega$ where $I_0(\alpha) = \delta_0(\alpha)$ $\alpha \in \mathbb{Z}^{\nu}$. So we can define

$$\rho(\lambda) = \langle (E_{\lambda}I_0, I_0) \rangle$$

where $\langle \ \rangle$ is the expectation with respect to the probability measure P. ρ is called the spectral distribution function of the ensemble of operators $\{H^{\omega}; \omega \in \Omega\}$. Our present aim is to show that ρ and the distribution function F of q(0) have the same tails asymptotically in the following sense.

Theorem. The next two conditions are equivalent to each other for $\alpha > 1$ and A > 0.

(6)
$$\lim_{x \to -\infty} \frac{\log F(x)}{|x|^{\alpha}} = -A.$$

(7)
$$\lim_{\lambda \to -\infty} \frac{\log \rho(\lambda)}{|\lambda|^{\alpha}} = -A.$$

We can prove this theorem quite easily if we use the following two lemmas. We introduce a time continuous Markov process $\dot{M} = (\dot{\mathcal{Q}}, \dot{\mathcal{B}}, \dot{X}_t, \dot{P}_a)_{a \in Z^{\nu}}$ on Z^{ν} whose generator is H^0 .

Lemma 1.

(8)
$$t \int_{-\infty}^{\infty} e^{-tx} \rho(x) dx = \dot{E}_0 \Big(\Big\langle \exp\Big(-\int_0^t q(\dot{X}_s) ds\Big) \Big\rangle; \dot{X}_t = 0 \Big) (\leq \infty), \quad t > 0$$
 $\dot{E}_0 \text{ being the expectation with respect to } \dot{P}_0.$

Lemma 2. Let $H(\lambda)$ be a non-decreasing function such that $H(-\infty)=0$ and G(t) be its Laplace transform:

(9)
$$G(t) = \int_{-\infty}^{\infty} e^{-t\lambda} dH(\lambda).$$

Then the following two statements are equivalent:

(10)
$$\lim_{\lambda \to -\infty} \frac{\log H(\lambda)}{|\lambda|^{\alpha}} = -A \qquad \alpha > 1, A > 0,$$

(11)
$$\lim_{t\to\infty}\frac{\log G(t)}{t^r}=B \qquad \gamma>1, B>0.$$

Here α, γ, A and B are related by

$$\gamma = \frac{\alpha}{\alpha - 1} \left(\alpha = \frac{\gamma}{\gamma - 1} \right) B = (\alpha - 1) \alpha^{\alpha/(1 - \alpha)} A^{1/(1 - \alpha)} (A = (\gamma - 1) \gamma^{\gamma/(1 - \gamma)} B^{1/(1 - \gamma)}).$$

Proof of Theorem. It holds that

(12)
$$e^{-\nu\sigma^{2}t} \int_{-\infty}^{\infty} e^{-t\lambda} dF(\lambda) \leq \dot{E}_{0} \left(\left\langle \exp\left(-\int_{0}^{t} q(\dot{X}_{s}) ds\right) \right\rangle; \dot{X}_{t} = 0 \right) \\ \leq \int_{-\infty}^{\infty} e^{-t\lambda} dF(\lambda),$$

because we have

$$\begin{split} \dot{E}_0\!\!\left(\!\left\langle \exp\left(-\int_0^t q(\dot{X}_s)ds\right)\!\right\rangle;\,\dot{X}_t\!=\!0\right) \\ &\geq \!\dot{E}_0\!\!\left(\!\left\langle \exp\left(-tq(0)\right)\!\right\rangle;\,\dot{X}_s\!=\!0\,\,0\!\leq\!s\!\leq\!t\right)\!=\!e^{-\nu\sigma^2t}\int_{-\infty}^\infty e^{-t\lambda}dF(\lambda) \end{split}$$

and furthermore

$$\dot{E}_0\left(\left\langle \exp\left(-\int_0^t q(\dot{X}_s)ds\right)\right\rangle; \, \dot{X}_t = 0\right) \leq \dot{E}_0\left(\frac{1}{t}\int_0^t \left\langle e^{-tq(\dot{X}_s)}\right\rangle ds; \, \dot{X}_t = 0\right)$$

$$\leq \left\langle e^{-tq(0)}\right\rangle = \int_0^\infty e^{-t\lambda}dF(\lambda)$$

applying Jensen inequality to

$$\exp\Big(-\int_0^t \{tq(\dot{X}_t)\}\cdot \frac{1}{t}\ ds\Big).$$

Combining (12) with Lemma 1 we obtain

(13)
$$e^{-\nu\sigma^2t} \int_{-\infty}^{\infty} e^{-t\lambda} dF(\lambda) \leq t \int_{-\infty}^{\infty} e^{-t\lambda} \rho(\lambda) d\lambda \leq \int_{-\infty}^{\infty} e^{-t\lambda} dF(\lambda).$$

Our theorem is now immediate from (13) and Lemma 2. q.e.d.

The random difference operator $-H^0+q$ has been introduced by one of the authors [1] where q(a), $a \in \mathbb{Z}^p$, are assumed to be independent identically distributed non-negative random variables. Our theorem with $\alpha=2$ corresponds to a theorem of L. A. Pastur [2] in which the Schrödinger operator $-\Delta+q$ with q(x), $x \in \mathbb{R}^p$, being a stationary Gaussian random field is treated.

The reason why we call ρ the spectral distribution function is in that the following ergodic theorem holds. Let Λ be a rectangle containing the origin with sides parallel to axes. Let $\lambda_1^u \leq \lambda_2^u \leq \lambda_3^u \leq \cdots \leq \lambda_N^u$ be the eigenvalues of the problem: $(H^o u)(a) = \lambda u(a)$, $a \in \Lambda - \partial \Lambda$; u(a) = 0, $a \in \partial \Lambda$. We put, for each λ , $\mathcal{N}^o(\lambda; \Lambda) = \sum_{\lambda_1^u \leq \lambda} 1$. Suppose the stationary random field q(a), $a \in Z^v$, is metrically transitive, then there exists a set $\Omega_0 \in \mathcal{B}$ with $P(\Omega_0) = 1$ such that, for each $\omega \in \Omega_0$,

$$\lim_{\stackrel{L \text{ (i) } (A) \to \infty}{i=1,2,\dots,\nu}} \frac{\mathcal{N}^{\nu}(\lambda;\Lambda)}{|\Lambda|} = \rho(\lambda)$$

at every continuity point λ of $\rho(\lambda)$. Here $L^{(i)}(\Lambda)$ (resp. $|\Lambda|$) is the side length (resp. volume) of Λ .

The proof of Lemma 1, Lemma 2 and the above ergodic theorem will be given elsewhere.

References

- [1] M. Fukushima: On the spectral distribution of a disordered system and the range of a random walk. Osaka Journal of Math., 11, 73-85 (1974).
- [2] L. A. Pastur: Spectra of random self-adjoint operator. Russian Mathematical Surveys, 28, 1-67 (1973).