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1. Preliminaries. The aim of this note is to prove the L(R)
boundedness of a class of integral transformations which play a fun-
damental r61e in our notes [2] and [3].

2. Assumptions. We shall treat the following integral trans-
formation;

( 1 ) Af(x)=.[,a(x,_ y) exp (iS(x, y))f(y)dy, >0,

which is defined at least or f e C(Rn). Let xl denote the length o
n vector x. Our assumptions are the ollowing;
( A-I ) S(x, y) is a real infinitely differentiable unction on RRn.
( A-II ) =]grad (S(x, y)-S(x, z))(x, y, z)O(y-z]),

=grad (S(x, y)-S(z, y))(x, y, z)0(]x-z]),
where (x, y,z)>O, (x, y,z)>3>O, and (t)=(lO)-t or Ot
lOJ and t or 10 t.

(A-III) For any multi-index a there exists a constant CO such that
we have

(S(x, y)-S(x, z)) C

(S(x, y)-S(z, y)) c.
(A-IV) For any multi-index there exists a constant C>0 such that

we have
0 ((, )(, )) NC(z, ,)

(a(x, y)a(z, y)) C(x, y,

3. Result. Let Ilfll denote the usual L norm of a function f.
Theorem. If assumptions (A-I), (A-II), (A-III) and (A-IV) hold,

we have estimate
IIAfllCa-/llfll, or 2>1.

Here C is a positive constant independent of a and f
4. Proof. Let g0=0, g, g, ..., g, be unit lattice points of

Rn. Let {(x)}=0 be a smooth partition of unity in R subordinate to
the covering of open cubes of side 2 with center at these points. We
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may assume that 9o(X)>O, 9(x)=9(x--g). We set
a(x, y)=9(x)9(y)a(x, y).

Then we have

(2) A= , A,
j,/--0

( 3 ) Af(x)=[ a(x, y) exp (i2S(x, y))f(y)dy.
JR

The adjoint * is given byA,, o A,,
4 ) A,,f(y)=j" aj,k,(z, y) exp (-i2S(z, y))f(z)dz.

The kernel function k(x, y) of the operator AA*,, turns out to be

( 5 k(x, z)=(x)j,(z) R, a(x, y)a(z, y)(y),(y)

exp i2(S(x, y)--S(z, y))dy.

Let L= --i( , 3Y3 )/q)2, where ,=.3y,.-(S(x, y)-S(z, y)), ]=1, 2,

..,n. Then (L--) exp (i2(S(x, y)-S(z, y))=0. Hence we have

k(x, z)=.-(x)p,(z) f L*t(a(x, y)a(z, y)(y),(y))( 6 R

exp i(S(x, y)- S(z, y))dy.
Here is an arbitrary nonnegative integer. We use (A-II), (A-III)
and (A-IV) and have estimate

( 7 ) L*r(a(x, y)a(z, y)(y),(y))I<= CS(I x- z I)-if supp gl supp , y. Therefore we obtain

( 8 ) k(x, z)I C2-(x)J,(z)O(I x--zl)-z(g--g’),
where Z is the characteristic function o the set {x; x<10/-}. Let
p be an arbitrary positive number p< 1. We divide the integral

(9) ,[k(x, z)]dz= [k(x,z)[dz+ [k(x,z)ldz.

First we have

Ik(x,z)]dz<Cz(g--g,)[j(x)] p(z)dzz(g-g,)(10) ,-1<

<= Cz(g g,)z(g g,)P=.
If g-g, esuppz, then Iz-xl>4>p for any (x,z) in support of

(x),(z). From this we have

I I O(x--z)-,(z)dz(11) ,<_,
k(x, z) dz C2-tz(g g,)(x)

C-tz(g-g,)O([g-g,[)-, /=0, 1, ....
On the other hand, if g-g, e supp , we have

(12) <, _,,Ik(x’z)ldz<--C2-z(g--g’)z(g--g’)
<= C2-z(g g,)z(g- g,)(1 + p=-t).

Hence we obtain
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(13) Ik(x’z)ldz<=CZ(g-g’)z(g-g)’)(p+2-(l+p-))

+ Cf-z(g g,)(1 + 0(I g g, I)) -,
or any pe[0,1] and /=0,1,2,.... We choose p=2- and 1>2
max (n, n/a). Then we have

(14) k(x, z)]dzCf-nz(g-g,)(l +8(g-g,))-.

Similarly we have

(15) _.[ ]k(x, z)]dx Cf-z(g g,)(1 + 8(g g, ))- .
It 2ollows rom (14) and (15) that
(16) AA,, C-z(g g,)(1 +(g g, ))- .
Note that the kernel function k(x, z) o transformation AA,, is

(17) k(x, z)=(x),(z) .[,a(y, x)a(y, z) exp -i2(S(y, x)-S(y, z))dy.

The same discussion as above proves that
(18) AA,, C-z(gj- g,)(1 + ([g g, [))-’.
We set p=(], k) and p’=(]’, k’) in Z. Then we have

[]AA, []h(p,(19)
and
(20)
where

AA*, -< h(P, P’),

h(9, 9’) C#-nP(z(g g,)(1 + (Ig g, I))-+ z(g-- g,)(Z + 8(I g-- g;, I))-9/’.
We can easily see that sups, ( h(p, p’)<: C2-/. This and lemma of
Calderbn-Vaillancourt prove our theorem.

5o A corollary. The above result is applicable to integral
transformation o the following type"

(21) Bf(x)=ff a(x, y) exp i(S(x, y)--y, z)f(z)dzdy.
_nXRn

Corollary. Assume tha functions S(x,y) and a(x, y) satisfy
assumptions (A-I), (A-II), (A-III) and (A-IV). Then the integral trans-
formation B defined by (21) is estimated as

IlBfil<=Cf-llfll,
where CO is a constant independent of f and .

Proof. Set

g(y)-,,.[_ exp (-ify. z)f(z)dz.

Then we have IIgll=(J/2z)-/llfll. We apply our theorem to

Bf(x)--f a(x, y) exp ijS(x, y)g(y)dy.

We obtain 11Bf <=62- g <-_ 62- f 11.
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