# 21. On the Boundedness of Integral Transformations with Highly Oscillatory Kernels 

By Daisuke Fujiwara<br>Department of Mathematics, University of Tokyo (Comm. by Kôsaku Yosida, m. J. A., Feb. 12, 1975)

§ 1. Preliminaries. The aim of this note is to prove the $L^{2}\left(R^{n}\right)$ boundedness of a class of integral transformations which play a fundamental rôle in our notes [2] and [3].
§ 2. Assumptions. We shall treat the following integral transformation;

$$
\begin{equation*}
A f(x)=\int_{R^{n}} a(x, y) \exp (i \lambda S(x, y)) f(y) d y, \quad \lambda>0 \tag{1}
\end{equation*}
$$

which is defined at least for $f \in C_{0}^{\infty}\left(R^{n}\right)$. Let $|x|$ denote the length of $n$ vector $x$. Our assumptions are the following;
( A-I ) $S(x, y)$ is a real infinitely differentiable function on $R^{n} \times R^{n}$.
( A-II) $\Phi=\left|\operatorname{grad}_{x}(S(x, y)-S(x, z))\right| \geqq \Xi_{1}(x, y, z) \theta(|y-z|)$,

$$
\Psi=\left|\operatorname{grad}_{y}(S(x, y)-S(z, y))\right| \geqq \Xi_{2}(x, y, z) \theta(|x-z|),
$$

where $\Xi_{1}(x, y, z)>\delta>0, \Xi_{2}(x, y, z)>\delta>0$, and $\theta(t)=(10 \sqrt{n})^{\sigma-1} t$ for $0<t$ $<10 \sqrt{n}$ and $=t^{\sigma}$ for $10 \sqrt{n}<t$.
(A-III) For any multi-index $\alpha$ there exists a constant $C>0$ such that we have

$$
\begin{aligned}
& \left|\left(\frac{\partial}{\partial x}\right)^{\alpha}(S(x, y)-S(x, z))\right| \leqq C \Phi \\
& \left|\left(\frac{\partial}{\partial y}\right)^{\alpha}(S(x, y)-S(z, y))\right| \leqq C \Psi
\end{aligned}
$$

(A-IV) For any multi-index $\alpha$ there exists a constant $C>0$ such that we have

$$
\begin{aligned}
& \left|\left(\frac{\partial}{\partial x}\right)^{\alpha}(a(x, y) a(x, z))\right| \leqq C \Xi_{1}(x, y, z)^{|\alpha|} \\
& \left|\left(\frac{\partial}{\partial y}\right)^{\alpha}(a(x, y) a(z, y))\right| \leqq C \Xi_{2}(x, y, z)^{|\alpha|}
\end{aligned}
$$

§3. Result. Let $\|f\|$ denote the usual $L^{2}$ norm of a function $f$.
Theorem. If assumptions (A-I), (A-II), (A-III) and (A-IV) hold, we have estimate

$$
\|A f\| \leqq C \lambda^{-n / 2}\|f\|, \quad \text { for } \lambda>1
$$

Here $C$ is a positive constant independent of $\lambda$ and $f$.
§4. Proof. Let $g_{0}=0, g_{1}, g_{2}, \cdots, g_{k}, \cdots$ be unit lattice points of $R^{n}$. Let $\left\{\varphi_{j}(x)\right\}_{j=0}^{\infty}$ be a smooth partition of unity in $R^{n}$ subordinate to the covering of open cubes of side 2 with center at these points. We
may assume that $\varphi_{0}(x) \geqq 0, \varphi_{j}(x)=\varphi\left(x-g_{j}\right)$. We set

$$
a_{j_{k}}(x, y)=\varphi_{j}(x) \varphi_{k}(y) a(x, y) .
$$

Then we have

$$
\begin{equation*}
A=\sum_{j, k=0}^{\infty} A_{j k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
A_{j k} f(x)=\int_{R^{n}} a_{j k}(x, y) \exp (i \lambda S(x, y)) f(y) d y \tag{3}
\end{equation*}
$$

The adjoint $A_{j^{\prime} k^{\prime}}^{*}$ of $A_{j^{\prime} k^{\prime}}$ is given by

$$
\begin{equation*}
A_{j^{\prime} k^{\prime}}^{*} f(y)=\int \overline{a_{j^{\prime} k^{\prime}}(z, y)} \exp (-i \lambda S(z, y)) f(z) d z \tag{4}
\end{equation*}
$$

The kernel function $k(x, y)$ of the operator $A_{j k} A_{j^{\prime} k^{\prime}}^{*}$ turns out to be

$$
\begin{equation*}
k(x, z)=\varphi_{j}(x) \varphi_{j^{\prime}}(z) \int_{R^{n}} a(x, y) \overline{a(z, y)} \varphi_{k}(y) \varphi_{k^{\prime}}(y) \tag{5}
\end{equation*}
$$

$$
\times \exp i \lambda(S(x, y)-S(z, y)) d y
$$

Let $L=-i\left(\sum_{j}^{n} \phi_{j} \frac{\partial}{\partial y_{j}}\right) / \Phi^{2}$, where $\phi_{j}=\frac{\partial}{\partial y_{j}}(S(x, y)-S(z, y)), j=1,2$,
$\cdots, n$. Then $(L-\lambda) \exp (i \lambda(S(x, y)-S(z, y))=0$. Hence we have

$$
\begin{align*}
k(x, z)= & \lambda^{-l} \varphi_{j}(x) \varphi_{j^{\prime}}(z) \int_{R^{n}} L^{* l}\left(a(x, y) \overline{a(z, y)} \varphi_{k}(y) \varphi_{k^{\prime}}(y)\right)  \tag{6}\\
& \times \exp i \lambda(S(x, y)-S(z, y)) d y .
\end{align*}
$$

Here $l$ is an arbitrary nonnegative integer. We use (A-II), (A-III) and (A-IV) and have estimate

$$
\begin{equation*}
\left|L^{* l}\left(a(x, y) \overline{a(z, y)} \varphi_{k}(y) \varphi_{k^{\prime}}(y)\right)\right| \leqq C \theta(|x-z|)^{-\iota} \tag{7}
\end{equation*}
$$

if $\operatorname{supp} \varphi_{k} \cap \operatorname{supp} \varphi_{k^{\prime}} \ni y$. Therefore we obtain

$$
\begin{equation*}
|k(x, z)| \leqq C \lambda^{-l} \varphi_{j}(x) \varphi_{j^{\prime}}(z) \theta(|x-z|)^{-l} \chi\left(g_{k}-g_{k^{\prime}}\right), \tag{8}
\end{equation*}
$$

where $\chi$ is the characteristic function of the set $\{x ; x<10 \sqrt{n}\}$. Let $\rho$ be an arbitrary positive number $\rho<1$. We divide the integral

$$
\begin{equation*}
\int_{R^{n}}|k(x, z)| d z=\int_{|z-x|<\rho}|k(x, z)| d z+\int_{\rho<|z-x|}|k(x, z)| d z . \tag{9}
\end{equation*}
$$

First we have

$$
\begin{align*}
\int_{|z-x|<p}|k(x, z)| d z & \leqq C \chi\left(g_{k}-g_{k^{\prime}}\right)\left|\varphi_{j}(x)\right| \int_{|z-x|<p} \varphi_{j}(z) d z \chi\left(g_{j}-g_{j^{\prime}}\right)  \tag{10}\\
& \leqq C \chi\left(g_{k}-g_{k^{\prime}}\right) \chi\left(g_{j}-g_{j^{\prime}}\right) \rho^{n} .
\end{align*}
$$

If $g_{j}-g_{j^{\prime}} \notin \operatorname{supp} \chi$, then $|z-x|>4 \sqrt{n}>\rho$ for any $(x, z)$ in support of $\varphi_{j}(x) \varphi_{j^{\prime}}(z)$. From this we have

$$
\begin{align*}
\int_{\rho<|x-z|}|k(x, z)| d z & \leqq C \lambda^{-l} \chi\left(g_{k}-g_{k^{\prime}}\right) \varphi_{j}(x) \int_{4 \sqrt{n}<|x-z|} \theta(x-z)^{-l} \varphi_{j^{\prime}}(z) d z  \tag{11}\\
& \leqq C \lambda^{-l} \chi\left(g_{k}-g_{k^{\prime}}\right) \theta\left(\left|g_{j}-g_{j^{\prime}}\right|^{-l}, \quad l=0,1, \cdots\right.
\end{align*}
$$

On the other hand, if $g_{j}-g_{j} \in \operatorname{supp} \chi$, we have

$$
\begin{align*}
\int_{\rho<|x-z|}|k(x, z)| d z & \leqq C \lambda^{-l} \chi\left(g_{k}-g_{k^{\prime}}\right) \chi\left(g_{j}-g_{j^{\prime}}\right) \int_{\rho<|x-z|<10 \sqrt{n}}|x-z|^{-l} d z  \tag{12}\\
& \leqq C \lambda^{-l} \chi\left(g_{k}-g_{k^{\prime}}\right) \chi\left(g_{j}-g_{j^{\prime}}\right)\left(1+\rho^{n-l}\right) .
\end{align*}
$$

Hence we obtain

$$
\begin{align*}
\int|k(x, z)| d z \leqq & C \chi\left(g_{k}-g_{k^{\prime}}\right) \chi\left(g_{j}-g_{j^{\prime}}\right)\left(\rho^{n}+\lambda^{-l}\left(1+\rho^{n-l}\right)\right)  \tag{13}\\
& +C \lambda^{-l} \chi\left(g_{k}-g_{k^{\prime}}\right)\left(1+\theta\left(\left|g_{j}-g_{j^{\prime}}\right|\right)\right)^{-l}
\end{align*}
$$

for any $\rho \in[0,1]$ and $l=0,1,2, \cdots$. We choose $\rho=\lambda^{-1}$ and $l>2$ $\max (n, n / \sigma)$. Then we have

$$
\begin{equation*}
\int_{R^{n}}|k(x, z)| d z \leqq C \lambda^{-n} \chi\left(g_{k}-g_{k^{\prime}}\right)\left(1+\theta\left(\left|g_{j}-g_{j^{\prime}}\right|\right)\right)^{-l} . \tag{14}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\int_{R^{n}}|k(x, z)| d x \leqq C \lambda^{-n} \chi\left(g_{k}-g_{k^{\prime}}\right)\left(1+\theta\left(\left|g_{j}-g_{j^{\prime}}\right|\right)\right)^{-l} \tag{15}
\end{equation*}
$$

It follows from (14) and (15) that

$$
\begin{equation*}
\left\|A_{j k} A_{j^{\prime} k^{\prime}}^{*}\right\| \leqq C \lambda^{-n} \chi\left(g_{k}-g_{k^{\prime}}\right)\left(1+\theta\left(\left|g_{j}-g_{j^{\prime}}\right|\right)\right)^{-l} . \tag{16}
\end{equation*}
$$

Note that the kernel function $k_{1}(x, z)$ of transformation $A_{j_{k}}^{*} A_{j^{\prime} k^{\prime}}$ is

$$
\begin{equation*}
k_{1}(x, z)=\varphi_{k}(x) \varphi_{k^{\prime}}(z) \int_{R^{n}} \overline{a(y, x)} a(y, z) \exp -i \lambda(S(y, x)-S(y, z)) d y \tag{17}
\end{equation*}
$$

The same discussion as above proves that

$$
\begin{equation*}
\left\|A_{j_{k}}^{*} A_{j^{\prime} k^{\prime}}\right\| \leqq C \lambda^{-n} \chi\left(g_{j}-g_{j^{\prime}}\right)\left(1+\theta\left(\left|g_{k}-g_{k^{\prime}}\right|\right)\right)^{-l} . \tag{18}
\end{equation*}
$$

We set $p=(j, k)$ and $p^{\prime}=\left(j^{\prime}, k^{\prime}\right)$ in $Z^{2 n}$. Then we have

$$
\begin{equation*}
\left\|A_{p}^{*} A_{p^{\prime}}\right\| \leqq h^{2}\left(p, p^{\prime}\right) \tag{19}
\end{equation*}
$$

and
(20)

$$
\left\|A_{p} A_{p^{\prime}}^{*}\right\| \leqq h^{2}\left(p, p^{\prime}\right)
$$

where

$$
\begin{aligned}
h\left(p, p^{\prime}\right)= & C \lambda^{-n / 2}\left(\chi\left(g_{j}-g_{j^{\prime}}\right)\left(1+\theta\left(\mid g_{k}-g_{k^{\prime}}\right)\right)^{-l}\right. \\
& \left.+\chi\left(g_{k}-g_{k^{\prime}}\right)\left(1+\theta\left(\left|g_{j}-g_{j^{\prime}}\right|\right)\right)^{-l}\right)^{1 / 2} .
\end{aligned}
$$

We can easily see that $\sup _{p^{\prime}}\left(\sum_{p} h\left(p, p^{\prime}\right) \leqq C \lambda^{-1 / 2 n}\right.$. This and lemma of Calderòn-Vaillancourt prove our theorem.
§5. A corollary. The above result is applicable to integral transformation of the following type:

$$
\begin{equation*}
B f(x)=\iint_{R^{n \times R^{n}}} a(x, y) \exp i \lambda(S(x, y)-y \cdot z) f(z) d z d y \tag{21}
\end{equation*}
$$

Corollary. Assume that functions $S(x, y)$ and $a(x, y)$ satisfy assumptions (A-I), (A-II), (A-III) and (A-IV). Then the integral transformation $B$ defined by (21) is estimated as

$$
\|B f\| \leqq C \lambda^{-n}\|f\|,
$$

where $C>0$ is a constant independent of $f$ and $\lambda$.
Proof. Set

$$
g_{\lambda}(y)=\int_{R^{n}} \exp (-i \lambda y \cdot z) f(z) d z
$$

Then we have $\left\|g_{\lambda}\right\|=(\lambda / 2 \pi)^{-n / 2}\|f\|$. We apply our theorem to

$$
B f(x)=\int_{R^{n}} a(x, y) \exp i \lambda S(x, y) g_{\lambda}(y) d y
$$

We obtain $\|B f\| \leqq C \lambda^{-n / 2}\left\|g_{2}\right\| \leqq C \lambda^{-n}\|f\|$.

## References

[1] A. P. Calderòn and R. Vaillancourt: On the boundedness of pseudo-differential operators. J. Math. Soc. Japan, 23, 374-378 (1971).
[2] D. Fujiwara: Fundamental solution of partial differential operators of Schrödinger's type. I. Proc. Japan Acad., 50, 566-569 (1974).
[3] -: Fundamental solution of partial differential operators of Schrödinger's type. II. ibid., 50, 699-701 (1974).

