33. Local Solvability of a Class of Partial Differential Equations with Multiple Characteristics

By Waichirô Matsumoto
Kyoto University
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1975)

§ 1. Introduction. The present paper is concerned with local solvability for the following type of operators with C^{∞} coefficients

$$
L\left(x ; \partial_{x}\right)=P\left(x ; \partial_{x}\right)+Q\left(x ; \partial_{x}\right)+R\left(x ; \partial_{x}\right) \quad\left(x \in \boldsymbol{R}^{n}\right),
$$

where $P\left(x ; \partial_{x}\right), Q\left(x ; \partial_{x}\right), R\left(x ; \partial_{x}\right)$ are the principal part of order s, the homogeneous part of order $s-1$, and the part of order $s-2$, respectively. When $P\left(x ; \partial_{x}\right)$ is of principal type, L. Nirenberg-F. Treves [3] and R. Beals-G. Fefferman [1] established the necessary and sufficient condition for local solvability. On the other hand, when $P\left(x ; \partial_{x}\right)$ has double characteristics, a necessary condition is given by F. CardosoF. Treves [2]. In that paper they pointed out that the subprincipal part of $L\left(x ; \partial_{x}\right)$ plays an important role.

In this paper, we give a sufficient condition under some hypotheses not only for the principal part but for the subprincipal part. A forthcoming article will give a detailed proof. Let V_{x} be a neighbourhood of the origin in \boldsymbol{R}_{x}^{n}, and $\boldsymbol{S}_{\xi}^{n-1}$ be the unit sphere in \boldsymbol{R}_{ξ}^{n}. For the principal symbol $P(x ; \xi)$, we assume that the characteristics of $P(x ; \xi)$ have locally constant multiplicities in $V_{x} \times \boldsymbol{S}_{\xi}^{n-1}$. Under this assumption when we divide $J=\left\{(x, \xi) \in V_{x} \times S_{\xi}^{n-1} \mid P(x ; \xi)=0\right\}$ into the connected components $\left\{J_{k}\right\}, P(x ; \xi)$ vanishes of constant order m_{k} on J_{k}. Moreover, for simplicity, we assume that $P\left(x ; \partial_{x}\right)$ has real coefficients.
§ 2. Statement of the theorem. Let us put

$$
J^{(2)}=\left\{(x, \xi) \in J \mid \operatorname{grad}_{\xi} P(x ; \xi)=0\right\}
$$

and divide it into the connected components $\left\{J_{k}^{(2)}\right\}$. For the subprincipal symbol

$$
\Pi(x ; \xi)=Q(x ; \xi)-\frac{1}{2} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial_{x_{j}} \partial_{\xi_{j}}} P(x ; \xi),
$$

we assume that on each $J_{k}^{(2)}, \Pi(x ; \xi)$ satisfies one of the following conditions:
(A) $\operatorname{Re} \Pi(x ; \xi) \neq 0$ on $J_{k}^{(2)}$.
(B) $\Pi(x ; \xi) \equiv 0$ on $J_{k}^{(2)}$ and if $m_{k} \geqslant 3$ moreover $\operatorname{grad}_{\xi} \operatorname{Re} \Pi(x ; \xi) \neq 0$ on $J_{k}^{(2)}$.
When the above assumptions are satisfied, we have the following proposition.

Proposition. For arbitrary real number l, there exists a neigh-
bourhood Ω of the origin in \boldsymbol{R}_{x}^{n}, such that
$\left\|L^{*} u\right\|_{-l-s+2, R^{n}} \geqslant c\|u\|_{-l, R^{n}} \quad$ for all $u(x) \in \mathscr{D}(\Omega)$.
Especially when (A) is always satisfied on $J^{(2)}$, we have
$\left\|L^{*} u\right\|_{-l-s+1, \boldsymbol{R}^{n}} \geqslant c\|u\|_{-l, \boldsymbol{R}^{n}} \quad$ for all $u(x) \in \mathscr{D}(\Omega)$.
The above proposition implies that the completion of $\mathscr{D}(\Omega)$ with the inner product $\left(L^{*} u, L^{*} v\right)_{-l-s+2, R^{n}}\left[\left(L^{*} u, L^{*} v\right)_{-l-s+1, R^{n}}\right.$, respectively] gives a Hilbert space $\mathscr{S}_{\text {g }}$, which is contained $H_{\bar{n}}{ }^{l}\left(\boldsymbol{R}^{n}\right)$ as a dense subspace. Therefore by the relation $\mathscr{S}^{\prime} \supset H^{l}(\Omega)$ and Riesz' Theorem, we have

Theorem. Under the same assumptions as in Proposition, for each real number l, there exists a neighbourhood Ω of the origin in \boldsymbol{R}_{x}^{n} which satisfies the following:

For each $f(x)$ in $H^{l}(\Omega)$ there exists a solution $v(x)$ of $L v=f$ in $H^{l+8-2}(\Omega)$. Moreover if (A) is satisfied on all over $J^{(2)}$, we can take $v(x)$ in $H^{l+s-1}(\Omega)$.
§ 3. Outline of the proof of Proposition. 1. Localization and modification of $\boldsymbol{L}(\boldsymbol{x} ; \boldsymbol{D}) . \quad L^{*}\left(x ; \partial_{x}\right)$ satisfies the same conditions as $L\left(x ; \partial_{x}\right)$. Therefore, for simplicity, we consider $L\left(x ; \partial_{x}\right)$ instead of $L^{*}\left(x ; \partial_{x}\right)$.

We modify the coefficients of $L(x ; D)$ out of a small neighbourhood of the origin in \boldsymbol{R}_{x}^{n} in order to make the oscillation in x of $L(x ; \xi)$ sufficiently small. Next, let us localize $L(x ; D)$ in \boldsymbol{R}_{ξ}^{n}. We take an element $\alpha(\xi)$ in $\mathscr{D}\left(\boldsymbol{S}_{\xi}^{n-1}\right)$ whose support is sufficiently small and intersects at most a component of $\left\{J_{k}\right\}$. For $\xi \in \boldsymbol{R}^{n}-\{0\}$, let $\alpha(\xi)=\alpha(\xi /|\xi|)$. We use Λ whose symbol is $\left(|\xi|^{2}+1\right)^{1 / 2}$, and denote l instead of $l+s-2[l+s-1$, respectively].

$$
\begin{aligned}
\alpha(D) \Lambda^{-l} L(x ; D) u= & P(x ; D)\left(\alpha \Lambda^{-l} u\right)-i Q(x ; D)\left(\alpha \Lambda^{-l} u\right) \\
& -i \operatorname{grad}_{\xi} \Lambda^{-l} \cdot \operatorname{grad}_{x} P(x ; D)(\alpha u) \\
& -i \operatorname{grad}_{\xi} \alpha(D) \cdot \operatorname{grad}_{x} P(x ; D) \Lambda^{-l} u \\
& -i \tilde{R}(x ; D),
\end{aligned}
$$

where $\tilde{R}(x ; D)$ is of order $s-2$. In the case where supp $[\alpha]$ does not intersect on J, easily we have

$$
\left\|\alpha \Lambda^{-l} L u\right\| \geqslant c\|\alpha u\|_{s-l}-C\|u\|_{s-l-2}-C(h)\|u\|_{s-l-3} .
$$

And in the case where supp $[\alpha]$ intersects on $J \backslash J^{(2)}$, for $\Omega=B_{h}$ (B_{h} is the ball with the radius h and the centre at the origin.), we have

$$
\left\|\alpha \Lambda^{-l} L u\right\| \geqslant \frac{c}{h}\|\alpha u\|_{s-l-1}-C\|u\|_{s-l-2}-C(h)\|u\|_{s-l-3}
$$

In the other cases, by a suitable rotation of the coordinates we can express

$$
P(x ; \xi)=a_{0}(x)\left(\xi_{1}-\psi\left(x ; \xi^{\prime}\right)\right)^{m}\left\{\xi_{1}^{s-m}-\sum_{j=0}^{s-m-1} a_{j}\left(x ; \xi^{\prime}\right) \xi_{1}^{j}\right\}
$$

where $a_{0}(x)$ and $P_{0}(x ; \xi) \equiv \xi_{1}^{s-m}-\sum_{j=0}^{s-m-1} a_{j}\left(x ; \xi^{\prime}\right) \xi_{1}^{j}$ do not vanish on V_{x} $\times \operatorname{supp}[\alpha]$, and where $\psi\left(x ; \xi^{\prime}\right)$ and $a_{j}\left(x ; \xi^{\prime}\right)\left(0 \leqslant j \leqslant s-m-1\right.$ and ξ^{\prime}
$\left.=\left(\xi_{2}, \cdots, \xi_{n}\right)\right)$ are infinitely differentiable in x and holomorphic in ξ^{\prime}. In case under the condition (B), applying the estimate under the condition (A) for all $u(x)$ in $\mathscr{D}\left(B_{h}\right)$, we can easily obtain the estimate

$$
\|\alpha L u\|_{-l} \geqslant \frac{c}{h}\|\alpha u\|_{s-l-2}-C\|u\|_{s-l-2}-C(h)\|u\|_{s-l-3} .
$$

Therefore in this paper we only consider the case under the condition (A).

Since we can modify the symbols $\psi\left(x ; \xi^{\prime}\right)$ and $a_{j}\left(x ; \xi^{\prime}\right)(0 \leqslant j \leqslant s$ $-m-1)$ out of $\operatorname{supp}[\alpha]$, we can extend $\psi\left(x ; \xi^{\prime}\right)$ and $a_{j}\left(x ; \xi^{\prime}\right)$ suitably as the elements in $C^{\infty}\left(V_{x} \times\left(\boldsymbol{R}_{\xi^{\prime}}^{n-1}-\{0\}\right)\right)$. We put $\Pi_{0}(x ; D)=P_{0}(x ; D)\left(D_{1}\right.$ $\left.-\psi\left(x ; D^{\prime}\right)\right)^{m}$ and $i \Pi_{1}(x ; D)=\Pi_{0}(x ; D)-P(x ; D)+i Q(x ; D)+i \operatorname{grad}_{\varepsilon} \Lambda^{-\iota}$ $\times \operatorname{grad}_{x} P(x ; D) \Lambda^{l}$, where $D_{1}=i^{-1}\left(\partial / \partial_{x_{1}}\right)$ and $D^{\prime}=i^{-1}\left(\partial / \partial_{x^{\prime}}\right)$. Let us remark that

$$
\Pi_{1}^{0}(x, \xi) \equiv \Pi(x ; \xi) \quad \text { modulo }\left(\xi_{1}-\psi\left(x ; \xi^{\prime}\right)\right)^{m-1}
$$

where Π_{1}^{0} is the principal part of Π_{1}.
2. Reduction to a first order system. Let $\tilde{u}=\alpha(D) \Lambda^{-l} u, \tilde{u}_{j}$ $=\alpha_{\xi j}(D) \Lambda^{-l+1} u$ and Λ_{0} be a pseudo-differential operator with the symbol $\left|\xi^{\prime}\right|=\left(\sum_{j=2}^{n} \xi_{j}^{2}\right)^{1 / 2}$. Put

$$
\begin{aligned}
& u_{k}= \begin{cases}\left(\Lambda_{0}+1\right)^{s-k}\left(D_{1}-\psi\left(x ; D^{\prime}\right)\right)^{k-1} \tilde{u} & (1 \leqslant k \leqslant m+1), \\
\left(\Lambda_{0}+1\right)^{s-k} D_{1}^{k-m-1}\left(D_{1}-\psi\left(x ; D^{\prime}\right)\right)^{m} \tilde{u} \quad(m+2 \leqslant k \leqslant s),\end{cases} \\
& u_{j k}= \begin{cases}\left(\Lambda_{0}+1\right)^{s-k}\left(D_{1}-\psi\left(x ; D^{\prime}\right)\right)^{k-1} \tilde{u}_{j} & (1 \leqslant k \leqslant m+1), \\
\left(\Lambda_{0}+1\right)^{s-k} D_{1}^{k-m-1}\left(D_{1}-\psi\left(x ; D^{\prime}\right)\right)^{m} \tilde{u}_{j} & (m+2 \leqslant k \leqslant s),\end{cases}
\end{aligned}
$$

$\Pi_{1} \tilde{u}=\sum_{k=1}^{s} b_{k}\left(x ; D^{\prime}\right) u_{k}, U=\left(u_{k}\right)$ and $U_{j}=\left(u_{j k}\right)$. Then we have

$$
\|\alpha L u\|_{-l}=\left\|D_{1} U-(H+B+G) U-\sum_{j=1}^{n} K_{j} U_{j}+U^{\prime}\right\|=\left\|L_{0} U\right\|
$$

where

c_{j} being of order $0(1 \leqslant j \leqslant m), G$ is of order $-1, K_{j}=\left(\begin{array}{cc} & 0 \\ 0 \cdots 0 & k_{j m} \cdots k_{j s}\end{array}\right)$
$\left(1 \leqslant j \leqslant n, k_{j k}\right.$ being of order 0$)$ and $\left\|U^{\prime}\right\| \leqslant c\|u\|_{-l+s-2}$.
3. Jordan's canonical form of \boldsymbol{H}. The eigenvalues $\mu_{j}(1 \leqslant j \leqslant m)$ corresponding to ψ are expanded in the sense of Puiseux by $\left|\xi^{\prime}\right|^{-1 / m}$ and distinct. For the rest ones, we consider the eigenvalues $\lambda_{j}\left(\left|\xi^{\prime}\right|\right)$ of

where ξ_{0} is a fixed point in $\operatorname{supp}[\alpha] \cap \boldsymbol{S}_{\xi}^{n-1}$. On $\boldsymbol{S}_{\xi^{\prime}}^{n-2}, \lambda_{j}$ are constant roots with mutiplicities $r_{j}\left(1 \leqslant j \leqslant p\right.$ and $\left.\sum_{j=1}^{p} r_{j}=s-m\right)$. Since we can have exact expressions of the eigen-vectors V_{k} corresponding to $\mu_{k}(1 \leqslant k \leqslant m)$ and of root vectors $V_{j k}$ corresponding to $\lambda_{j}\left(1 \leqslant j \leqslant p, 1 \leqslant k \leqslant r_{j}\right)$. We put $\mathscr{I}={ }^{t}\left(V_{1}, \cdots, V_{m}, V_{11}, \cdots, V_{1 r_{1}}, V_{21}, \cdots, V_{2 r_{2}}, \cdots, V_{p r_{p}}\right)$, then \mathcal{N} is of the form $\left(\left.\frac{*}{0} \right\rvert\, \frac{*}{*}\right)$. Let $\mathscr{M}=\mathscr{N}^{-1}$, then \mathscr{M} is of the form $\left(\left.\frac{*}{0} \right\rvert\, \frac{*}{*}\right)$, too. Moreover we put

$$
\begin{aligned}
& H_{2}=\left(\left.0\right|_{a_{0}\left(x ; D^{\prime}\right)-a_{0}\left(x ; \xi_{0}^{\prime}| | \xi_{0}^{\prime} \mid\right) \Lambda_{0}, \cdots, a_{s-m-1}\left(x ; D^{\prime}\right)-a_{s-m-1}\left(x ; \xi_{0}^{\prime} /\left|\xi_{0}^{\prime}\right|\right) \Lambda_{0}}\right) \text {, } \\
& H_{3}=\binom{0}{i b_{1}\left(x ; D^{\prime}\right), \cdots, i b_{s}\left(x ; D^{\prime}\right)}, \quad C_{1}=\mathscr{N}_{2} H_{2} \mathscr{M}=\left(\frac{0}{0} \frac{0}{*}\right), \\
& C_{2}=\mathscr{N}_{2} H_{2}(\mathscr{M} \circ \mathfrak{N}-\mathscr{M} \mathfrak{l})=\left(\begin{array}{l|l}
\frac{0}{0} & \left.\frac{0}{*}\right), \quad C_{3}=\mathscr{N}_{2} H_{3}=\left(\frac{0}{*}\right), ~
\end{array}\right.
\end{aligned}
$$

and

where $\mathscr{I}_{2}={ }^{t}\left(0, \cdots, 0, V_{11}, \cdots, V_{p r_{p}}\right)$. Let us remark that C_{1}, C_{2} and C_{3} are of order 1,0 and 0 , respectively, and C_{2} and C_{3} have sufficiently small operator norms. Then,

$$
\begin{aligned}
& \mathscr{N} L_{0} U=D_{1} \Re U-\mathscr{D} I U-C_{1} \Re U-C_{2} U-C_{3} U-\mathscr{N}_{x_{1}}^{\prime} U-(\Re H-\mathscr{D}) U \\
& -\Im B U-\Re\left\{U-\sum_{j=1}^{n} \Re K_{j} U_{j}-\Re U^{\prime},\right.
\end{aligned}
$$

and $\left\|\mathscr{I} L_{0} U\right\| \leqslant c\|L u\|_{-l}$.
4. The estimate of $\boldsymbol{T} L_{0} U$. Let us put $\overparen{N U}=V=\left(v_{j}\right)$. For (D_{1} $\left.-\mu_{j}\left(x ; D^{\prime}\right)\right) v_{j}(1 \leqslant j \leqslant m)$ by the quasi-local property of pseudo-differential operators, using the weight function $\varphi=\left(x_{1}+2 h\right)^{-1}$ we have the following estimates in the same way as in [4] and [5]:

$$
\left\|\left(D_{1}-\mu_{j}\left(x ; D^{\prime}\right)\right) v_{j}\right\| \geqslant c\left\|\left(\Lambda_{0}+1\right)^{1-1 / m} v_{j}\right\|-C(h)\|u\|_{s-l-3}, \quad(1 \leq j \leq m) .
$$

And for $\left(D_{1}-\lambda_{j}\left(D^{\prime}\right)\right) v_{j}$, modifying the symbol ξ_{1} out of supp $[\alpha]$ we have

$$
\left\|\left(D_{1}-\lambda_{j}\left(D^{\prime}\right)\right) v_{j}\right\| \geqslant c\left\|\Lambda v_{j}\right\|-C(h)\|u\|_{s-l-3}, \quad(m+1 \leqslant j \leqslant s)
$$

Here, let $V^{(1)}={ }^{t}\left(v_{1}, \cdots, v_{m}, 0, \cdots, 0\right), V^{(2)}={ }^{t}\left(0, \cdots 0, v_{m+1}, \cdots, v_{s}\right)$, $U^{(2)}$ $={ }^{t}\left(0, \cdots, 0, u_{m+1}, \cdots, u_{s}\right)$, and $U_{j}^{(3)}=^{t}\left(0, \cdots, 0, u_{j m}, \cdots, u_{j s}\right) \quad(0 \leqslant j \leqslant n$ and $\left.U_{0}=U, u_{0 k}=u_{k}, m \leqslant k \leqslant s\right)$. Now we have the following

$$
\left\|গ L_{0} U\right\| \geqslant c\left\|\left(\Lambda_{0}+1\right)^{1-1 / m} V^{(1)}\right\|+c\left\|\Lambda V^{(2)}\right\|-\delta\left\|\Lambda V^{(2)}\right\|
$$

$$
\begin{aligned}
& -c_{1}\left\|U^{(2)}\right\|-c_{2}\left\|\left(\Lambda_{0}+1\right)^{-1} U\right\|-\sum_{j=1}^{n}\left\|U_{j}^{(3)}\right\|-\left\|U^{\prime}\right\|-C(h)\|u\|_{s-l-3} \\
\geqslant & c\|\alpha u\|_{s-l-1}+c\left\|\left(\Lambda_{0}+1\right)^{1-1 / m} U^{(3)}\right\|-\sum_{j=1}^{n}\left\|U_{j}^{(3)}\right\| \\
& -C^{\prime}\|u\|_{s-l-2}-C(h)\|u\|_{s-l-3}
\end{aligned}
$$

(for sufficiently small h).
In particular if we take $\alpha_{i}(\xi)$ as a partition of the unity of $\boldsymbol{S}_{\xi}^{n-1}$ and summing up for i, by the relation $\sum_{i} \sum_{j=1}^{n}\left\|U_{j}^{(3)}\right\| \leqslant c \sum_{i}\left\|U^{(3)}\right\|$ we arrive at the following inequality,

$$
\|L u\|_{-l} \geqslant c\|u\|_{-l+s-2}-C(h)\|u\|_{-l+s-3} .
$$

Fixing h, the above inequality implies the following
$\|L u\|_{-l} \geqslant c\|u\|_{-l+s-2} \quad$ for all $u(x) \in \mathscr{D}\left(B_{d}\right)(0<d \ll h)$, (see L. Nirenberg-F. Treves [3], Part II). Q.E.D.

References

[1] R. Beals and C. Fefferman: On local solvability of linear partial differential equations. Ann. Math., 97, 482-498 (1973).
[2] F. Cardoso and F. Treves: A necessary condition of local solvability for pseudo-differential equations with double characteristics. Ann. Inst. Fourier, 24(1), 225-292 (1974).
[3] L. Nirenberg and F. Treves: On local solvability of linear partial differential equations. I. Necessary condition. Ibid. II. Sufficient condition. Comm. Pure Appl. Math., 23, 1-38, 459-509 (1970).
[4] W. Matsumoto: Uniqueness in the Cauchy problem for partial differential equations with multiple characteristic roots. Proc. Japan Acad., 50(2), 100-103 (1974).
[5] -: Ibid. (to appear in J. Math. Kyoto Univ.).

