55. Note on Strongly Regular Rings and P₁-Rings

By Katsuo CHIBA*) and Hisao TOMINAGA**)

(Comm. by Kenjiro SHODA, M. J. A., April 12, 1975)

Throughout, $R \ (\neq 0)$ will represent a ring. R is called a reduced ring, if R contains no non-zero nilpotent elements. As is well-known, in a reduced ring every idempotent is central and the left annihilator l(T) of an arbitrary subset T of the ring coincides with the right one r(T). Following [4], R is said to be left s-unital, if RI=I for every left ideal I of R, or equivalently, if every principal left ideal (a) of R coincides with *Ra*. Needless to say, every regular ring is left s-unital. A left R-module U is defined to be *p*-injective, if for any (a) and any R-homomorphism $f:(a| \rightarrow U$ there exists an element $u \in U$ such that f(x) = xu for all $x \in (a \mid (cf. [5]))$. If R is a regular ring then every left *R*-module is *p*-injective. Conversely, if every $(a \mid is p - injective then R)$ is a regular ring. In fact, the identity map $i: (a \to (a)$ is induced by the right multiplication of some idempotent contained in (a). If R is a P_1 -ring, i.e., if aR = aRa for any $a \in R$, then the set N of nilpotent elements coincides with l(R) (cf. [3]). Similarly, if $aR = a^2R$ for any $a \in R$ then N = l(R). While, if $aR \subseteq Ra^2$ for any $a \in R$, then N coincides with $l(R^2)$ (cf. [2]). As to other terminologies used here, we follow [1].

Now, the purpose of this note is to prove the following theorems. Theorem 1. (a) The following conditions are equivalent:

(1) R is a strongly regular ring.

(2) R is a reduced ring such that every (a | is either l(b) with some b or Re with some idempotent e.

(3) R is a left s-unital, left duo ring such that every irreducible left R-module is p-injective.

(4) R is a left duo ring such that every (a) is p-injective.

- (5) R is a semi-prime P_1 -ring.
- (6) R is a semi-prime ring such that $aR = a^2R$ for any $a \in R$.
- (7) R is a semi-prime ring such that $aR \subseteq Ra^2$ for any $a \in R$.
- (b) The following conditions are equivalent:
- (1) R is a strongly regular ring with 1.

(2) R is a reduced ring such that every (a | is l(b) with some b.

(3) R is a left duo ring with 1 such that every irreducible left R-module is p-injective.

- (4) R is a P_1 -ring with 1.
- *) Hokkaido University.

**) Okayama University.

Theorem 2. The following conditions are equivalent:

- (1) R is a direct sum of a strongly regular ring and a zero ring.
- (2) R is a P_1 -ring.
- (3) $aR \subseteq Ra^2$ for any $a \in R$.
- (4) l(R) = r(R) and R/l(R) is strongly regular.
- (5) $R^2 = R^3$, $l(R^2) = r(R^2)$, and $R/l(R^2)$ is strongly regular.
- (6) $aR = a^2R$ and $Ra = Ra^2$ for any $a \in R$.
- (7) R/l(R) and R/r(R) are strongly regular.

Obviously, Theorem 1 contains the principal results of [5], and Theorem 2 improves [2, Theorems 1 and 3].

Proof of Theorem 1. (a) It is easy to see that (1) implies (2)-(7).

 $(2) \Rightarrow (1)$. If $(a^2|=Re$ with an idempotent e then $(a-ae)^2=0$ implies $a=ae \in (a^2|$. While, if $(a^2|=l(b)$ then $a^2b=0$ implies aba=0, and so $(ab)^2=0$. Hence, we have ab=0, which means $a \in l(b)=(a^2|$.

 $(3) \Rightarrow (1)$. To our end, it suffices to show that Ra + l(a) = R which will prove $Ra^2 = Ra = (a|$. If $Ra + l(a) \neq R$, then by [4, Lemma 1 (a)] there exists a maximal (left) ideal M containing Ra + l(a). We consider here the map $f: Ra \rightarrow R/M$ defined by $xa \rightarrow x + M(x \in R)$. To be easily seen, f is well-defined and is an R-homomorphism. Since R/M is an irreducible left R-module, there exists some $a \in R$ such that x + M = xab+M = M for all $x \in R$. But, this yields a contradiction R = M.

(4) \Rightarrow (1). Since R is a regular, left duo ring, it is strongly regular by [1, Theorem].

(5) \Rightarrow (1). In any rate, R is a reduced ring. If $a^2 = aa'a = a'a^2$ then $(a-aa')^2 = 0$, and hence a = aa' = aba with some b.

Similarly, (6) \Rightarrow (1) and (7) \Rightarrow (1).

(b) It suffices to prove that (2) implies (1). In fact, R is strongly regular by (a). We set $(a|=l(b)=Re_1 \text{ and } (b|=Re_2 \text{ with some (orthogonal) idempotents } e_1, e_2$. Then, $e=e_1+e_2$ is an idempotent and $(r(e))^2 = (r(e_1) \cap r(e_2))^2 = (r(a) \cap r(b))^2 = (r(a) \cap l(b))^2 = (r(a) \cap (a|)^2 = 0$. Hence, r(e)=0 and e is the identity of R.

In advance of the proof of Theorem 2, we state a couple of lemmas. Lemma 1. If $l(\mathbb{R}^n) = r(\mathbb{R}^n)$ and $\overline{\mathbb{R}} = \mathbb{R}/l(\mathbb{R}^n)$ is strongly regular for a positive integer n, then $\mathbb{R} = \mathbb{R}^{n+1} \oplus l(\mathbb{R}^n)$.

Proof. First, we claim that if e is an idempotent of R then it is central. In fact, \overline{R} being strongly regular, $ae - ea \in l(R^n)$ for any $a \in R$, so that $ae - eae = (ae - ea)e^n = 0$, and similarly ea - eae = 0. Thus, ae = eae = ea for any $a \in R$. The strong regularity of \overline{R} implies also $R = R^{n+1} + l(R^n)$. Now, let $x = \sum x_i^{(1)} x_i^{(2)} \cdots x_i^{(n+1)}$ be an arbitrary element of $R^{n+1} \cap l(R^n)$. Then, by the regularity of \overline{R} , $x_i^{(1)} \equiv x_i^{(1)}e \pmod{l(R^n)}$ for some (central) idempotent e. Hence, $(x_i^{(1)} - x_i^{(1)}e)R^n = 0$ and $x = \sum x_i^{(1)} ex_i^{(2)} \cdots x_i^{(n+1)} = \sum x_i^{(1)} x_i^{(2)} \cdots x_i^{(n+1)}e = xe^n = 0$, whence it follows

No. 4]

 $R = R^{n+1} \oplus l(R^n).$

Lemma 2. (a) If R is a P_1 -ring then l(x) = r(x) for any $x \in R$. (b) If $aR \subseteq Ra^2$ for any $a \in R$, then l(x) = r(x) for any $x \in R$.

Proof. Since (a) is [2, Lemma 1] itself, we shall prove (b) only. We claim first that if $yx \in l(R^2)$ then $yx \in l(R)$. By hypothesis, $yx=ry^2$ for some $r \in R$. Then, $0=yxry=ry^2ry$ implies $(yry)^2=0$, namely, $yry \in l(R^2)$. Accordingly, $(ry)^3=0$ and $ry \in l(R^2)$, which implies yxR $=ry^2R=0$. In particular, if xy=0 then $ry \in l(R^2)$ implies $ry \in l(R)$ and $yx=ry^2=0$.

Proof of Theorem 2. Our theorem is an easy combination of Theorem 1 (a), Lemma 1 and Lemma 2.

References

- K. Chiba and H. Tominaga: On strongly regular rings. Proc. Japan Acad., 49, 435-437 (1973).
- S. Ligh and Y. Utumi: Direct sum of strongly regular rings and zero rings. Proc. Japan Acad., 50, 589–592 (1974).
- [3] F. Szász: Some generalizations of strongly regular rings. I. Math. Japonicae, 17, 115-118 (1972).
- [4] H. Tominaga: On decompositions into simple rings (to appear in Math. J. Okayama Univ.).
- [5] R. Yue Chi Ming: On (von Neumann) regular rings. Proc. Edinburgh Math. Soc., 19(2), 89-91 (1974).