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Introduction. In the recent study of harmonic functions on an
open Riemann surface, it is known that every canonical potential,
especially every harmonic measure assumes a constant value quasi-
everywhere (or except for harmonic measure zero) on each component
of Kuramochi boundary. Such a property for boundary behaviors has
been investigated by Kusunoki and some others.

Continuously they have investigated whether these boundary be-
haviors would characterize those functions. For Riemann surfaces
with a finite number of boundary components, these characterizations
of harmonic measures are trivially established. M. Watanabe shows
that for Riemann surfaces with countably many boundary components,
it is also true under some additional conditions, and that there exist
Riemann surfaces with uncountably many boundary components in
which these boundary behaviors do not always characterize those
functions.

In the present paper, we shall show first simple examples showing
that such characterizations can not be expected for Riemann surfaces
with countably many boundary components. We should note that
there are some differences between the characterization by using
harmonic measure and that by using Kuramochi capacity. Our Ex-
ample 1 is concerned with the former and is a planar region. On the
other hand, the Riemann surface in Example 2 concerned with the
latter is of infinite genus. And next we shall show that the character-
ization of harmonic measures by using Kuramochi capacity is estab-
lished for Riemann surfaces with finite genus and countably many
boundary components.

At the end, I wish to express my hearty thanks to Professor
Tadao Kubo for his kind guidance and encouragement.

1. Let R be a Riemann surface and HC=HC(R) be the set of
harmonic functions on R such that i) each u belongs to class HD, i.e.
u is harmonic and has a finite Dirichlet integral, ii) u takes a constant
value almost everywhere (i.e. except a set of harmonic measure zero)
on each Ker4kjrt6-Stoilow’s boundary component of R. We shall use
the same terminologies and notations as in Ahlfors-Sario [1]. We write

HM {u e HD due F}.
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We call the elements of HM harmonic measures. Note that we use
the same terminology (harmonic measures) for the representing
measures of bounded hrmonic functions. The harmonic measure of a
set X in some boundary is denoted by lx, and lx is the lower envelope
for all equilibrium potentials o aeighbourhoods of X. If lx0, we
say that X is harmonic measure zero. It is known that HMHC (cf.
[4]). "A problem is whether HC coincides with HM or not." For this
purpose we use the well-known orthogonal decomposition"

We write
HK={u e HD; due *F,, u(a)=0 at a fixed point a e R},

and
KC--HK HC.

Our problem is equivalent to ask whether KC consists of only zero
function or not. Now Riemann surface R is assumed that it has at
most countably many boundary components. At first we observe the
class KC.

Lemma. Let R be of finite genus. If u e KC has a constant value
precisely on each Kerk]drtS-Stolow’s boundary component of R, then
u is a constant zero function.

Proof. We suppose that there exists such a noacoastant u. When
Re is a planar region, f--u+ i*u is a single valued analytic Dirichlet
finite function. The image of R by f is a covering surface over com-
plex plane whose countably many boundaries are parallel to imaginary
axis, so it has infinite area. This is a contradiction. When R is a
Riemann surface with finite genus, we can cut R along compact curves
so that the resulting surface R’ becomes a planar region. Thenf=u+i*u
is a single valued analytic Dirichlet finite unction in R’. By maximum
principle u does not take the maximal value of u oa the relative boundary
of R’ in R. So we conclude that the image of R’ by f has infinite area.
Similarly this leads to a contradiction.

This lemma suggests the ollowing for general Riemann surfaces.
Proposition 1. Any function u e KC has not any compact level

cycle {x e R; u(x)= c}.
Proof. We suppose that u has a compact level cycle {x e R; u(x)

--c}. Let V be a component of {x e R u(x) > c}, and cycle 7 be the rela-
tive boundary of V which consists in {x e R; u(x)= c}. Since the inner
normal derivative of u with respect to V is positive on T except for

a finite number of points, so [ *du O. On the other hand, since
J

is a dividing cycle and *due/’,, | *du=0. This is a contradiction,
J

which proves the statement.
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Corollary 1. All values of u e KC in R are taken at the ideal
boundary.

The statement of Lemma is established without the restriction of
genus for R. That is to say,

Corollary 2. If u e KC has a constant value precisely on each
Kerdk]drtS-Stolow’s boundary component of R, then u is a constant
zero function.

2. Now we shall show a planar region with countably many
boundary components such that KC:/: (0, i.e. HC:/:HM.

txample 1. We consider a rectangle
R’={z--x+iy e C; --lxl, --lyl},

and the following families of slits;
E={z=x+iy e C; x=l-1/2, {y{_l--1/p+ l/p3},
E={z=x+iy e C; --z e E},
F,={z=x+iy e C; x=]/p’, ly--(1--1/p)l_l/p3},
F, {z-- x + iy e C; e F,}

where p denotes a prime integer and I]I_<P’-1. We set
E E U E, F, F, tj F,,

and

Then R is a region with countably many boundary components. Let
z/ be an outer boundary of R,

zl--{z=x+iy e C; Ix]-----l, ]y]_l, or ]y]=l, ]xl_l}.
Now we shall show that the harmonic measure of z/ is zero. Consider
the rectangles

A(p,)--{z--x+iy e C; ]x]_1--1/2’, ]y]gl--1/pn},
B(p,+)={z=x+iy e R; 1--1/2+,_]x]_1,

or 1--1/p/--2/p/<_[yl<_l},
where {p} is an increasing sequence of prime iategers. Let S be a
positive superharmonic function in R, such that

i0 on all E with E A(p):/:O

S 0 on all F. with 1 glA(p)
1 on B(pn+l)
(harmonic in R--B(p/) except or the above slits.

Then as above mention the harmonic measure of z/ is equal to the
reduced function l(z), and l(z)<_S(z). Here we consider a harmonic
function f on a rectangle G={z=x+iy e C; [xl<l/2p, ly]<l} whose
boundary values are 0 on Ix]=l/2p, 1 on lyl=l. We set

M(p)--- sup {f(x+ iy) y-- 0}.
Clearly M(p) converges to 0, as p-./ c. Since S(z) is bounded by
M(p) on the boundary of A(p) and so on A(p). Hence S(z) con-
verges to 0 on every compact set for p-.+ c. Thus the harmonic
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measure of is zero.
Now evidently the nonconstant function x belongs to HC. Since

dx e *I’, the class KC contains nonconstant functions.
Remark. When we consider the Kuramochi’s compactification of

R, is not o.l Kuramochi capacity O. To see this let/ be the double
of R along all slits (E, F,} of R. Since we can regard y as a harmonic
Dirichlet function on /,/ is a hyperbolic Riemann surface. Let R0
be a disk in R and R be a disk in /--R which is mapped from R0 by
natural anti-conformal mapping of/. Let {/} be a regular exhaus-
tion of/ such that/ contains Ro [J R’o--o. The harmonic function W
inR whose boundary values are 0 on /0, 1 on 3/ converges to a non-

constant positive harmonic function W in /--/0 as n-./ c. The
restriction of W in R-Ro is a nonzero capacitary potential of in the
sense of Kuramochi. Hence is not of Kuramochi capacity 0.

3. Next we investigate a function class HC*(HD) whose con-
dition is stronger than that of HC. Each element of HC* has a quasi
continuous extension to the Kuramochi’s compactification and a con-
stant value quasi-everywhere on every boundary component corre-
ponding to every KerkjrtS-Stolow’s boundary component (cf. [2]
Theorem 2). We set KC*=HK HC*.

We shall show that there exists a Riemann surface with countably
many boundary components {} such tha$ KC* (0}, i.e. HC*CHM.

Example 2. Let R’ and E be the same as in Example 1, and let
{L} be the set of slits such that

L={z=x+iy e C; Ixl<_l--1/2--d(p), lYl=l--1/p+ 1/p}.
We need to choose a proper rel positive number d(p). We consider a
rectangle G+’ and the set of slits

G"+={z=x+iy e C; Ix1<1--1/2+’, lyl<l--1/p,,+ + 1/p+},
L",={z--x+iy e C; 1--1/2,--e<_lxl<_l--1/2",lYl=l--1/p,,+1/p}.

Let u," be a harmonic functioa with minimal Dirichlet integral among
the functions in G"+’-G" whose boundary values are I on aGn+’, 0 on
L,". Then by Dirichlet principle, Dirichlet integral D(u",) of u", increases
with . Moreover we can see

lira D(u,") 0.

So we can choose d(p,,) so that D(u(.))< 1/p,,. Denote

Let/ be the double of R along the slits {L}. Then/ is a Riemaaa
surface with infinite genus and couatably many boundary components.
Let + be the union of G+R and its image by natural anti-con-
ormal mapping in/. K=/--/ is a closed set. Let R0 be a disk
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which is contained in . The capacitary potential 1 of K is a
function in R which has minimal Dirichlet integral among functions
with values 1 on K and 0 in R0. We denote by dr an ideal outer
boundary component excluded {E) and its image E} from whole
boundary of /2. By Dirichlet principle we have the following in-
equality

D(1)
_
D(I)

_
2D() 2/.

Therefore it follows that d is of Kuramochi capacity 0. From the
construction of/2 is regarded a harmonic function on /2 and it is
easily seen that gz belongs to *F. Since has a constant value
quasi-everywhere on each d,, we conclude that KC* {0) i.e. HC* HM.

4. Moreover we can investigate the case when E is a Riemann
surface with finite genus and countably many Kerkjrt6-Stolow’s
boundary components.

Proposition 2. When Rc is a Riemann surface with finite genus
and countably many Kerdl]drtd-Stolow’s boundary components, KC*

{0} and HC*=HM.
Our problems are connected with generalized normal derivatives

which are used to prove the first mentioned property of harmonic
measures, and from Proposition 4 in [2] directly we get the following.

Corollary 1. When R is a Riemann surface with finite genus and
countably many Kerk]drtS-Stolow’s boundary components, the set
of HK-functions with generalized normal derivatives is dense in the
space of HK with respect to Dirichlet norm.

Remark. Ia the region R of Example 1 the set of HK-functions
with generalized normal derivatives is dense ia the space HK, but the
set of HK-functions with Fa-generalized normal derivatives is not
dense ia the space of HK (cf. [6]), which shows the differences between
generalized normal derivatives and Fa-generalized normal derivatives.
In the Riemann surface f of Example 2, the set o HK-functions
with generalized normal derivatives is not dense in the space of HK.
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