48. On the Structure of Singular Abelian Varieties

By Toshiyuki Katsura
(Comm. by Kunihiko Kodaira, April 12, 1975)

1. By a singular abelian variety we mean a complex abelian variety of dimension $g(g \geqq 2)$ whose Picard number equals the maximum possible number g^{2}. In this note we prove

Theorem. A singular abelian variety is isomorphic to a product of mutually isogenous elliptic curves with complex multiplications.

Let us remark that the following two facts have been known:
(i) A complex abelian variety of dimension g is singular if and only if it is isogenous to a product of g mutually isogenous elliptic curves with complex multiplications (see Mumford [1] and Shioda [2]).
(ii) The theorem is true for the dimension $g=2$ (see Shioda and Mitani [3]).

These facts depend, respectively, on the structure theorem of the endomorphism algebra of abelian varieties and on the analysis of the period map of abelian surfaces. Our proof of the theorem is based on the statements (i), (ii) and proceeds by induction on the dimension g.
2. Let A be a singular abelian variety of dimension g. Since the theorem is true for $g=2$ by (ii), we can assume that it is true for the dimension $\leqq g-1$. In view of (i), there exist g mutually isogenous elliptic curves E_{1}, \cdots, E_{g} with complex multiplications and a finite subgroup N of $E_{1} \times \cdots \times E_{g}$ such that

$$
\begin{equation*}
A \cong E_{1} \times \cdots \times E_{g} / N \tag{1}
\end{equation*}
$$

To prove the theorem, we can assume that N is a cyclic group of a prime order, say p. Let

$$
\begin{equation*}
a=\left(a_{1}, \cdots, a_{g}\right), \quad a_{i} \in E_{i} \tag{2}
\end{equation*}
$$

denote a generator of N.
If $a_{i}=0$ for some i, then the assertion follows from the induction hypothesis. So the idea of the proof is to show that there is an automorphism ψ of $E_{1} \times \cdots \times E_{g}$ such that
(3) $\quad \psi(a)=\left(b_{1}, \cdots, b_{g}\right), \quad b_{i} \in E_{i}, \quad b_{i_{0}}=0 \quad$ for some i_{0}.

To carry out this idea we need a few lemmata on elliptic curves.
3. We fix the following notation:
Z : the ring of rational integers,
C : the field of complex numbers,
\boldsymbol{F}_{p} : a finite field with p elements,
E, E_{1}, E_{2}, E_{3}, etc.: elliptic curves over C,
p_{E} : the multiplication by p on E,
$(E)_{p}=\operatorname{Ker}\left(p_{E}\right)$: the group of points of order p of E; this group can be regarded as a two dimensional vector space over \boldsymbol{F}_{p},

Hom $\left(E_{1}, E_{2}\right)$: the group of homomorphisms of E_{1} into E_{2}.
Furthermore, we denote by $r_{i j}$ the natural homomorphism of $\operatorname{Hom}\left(E_{i}, E_{j}\right)$ into $\operatorname{Hom}\left(\left(E_{i}\right)_{p},\left(E_{j}\right)_{p}\right)$, and by $I_{i j}$ its image. For any $x \in E,\langle x\rangle$ denotes the cyclic group generated by x, and $\langle x\rangle^{*}$ the set of non-zero elements of $\langle x\rangle$.

Lemma 1. Let E_{i} and E_{j} be isogenous elliptic curves with complex multiplications. Then, $\operatorname{dim}_{F_{p}} I_{i j}=2$.

Proof. By the assumption, $\operatorname{Hom}\left(E_{i}, E_{j}\right)$ is a free abelian group of rank 2. An element f of $\operatorname{Hom}\left(E_{i}, E_{j}\right)$ belongs to $\operatorname{Ker}\left(r_{i j}\right)$ if and only if $f=p_{E_{j}} \circ g$ for some $g \in \operatorname{Hom}\left(E_{i}, E_{j}\right)$. Hence, we have $I_{i j} \cong \operatorname{Hom}\left(E_{i}, E_{j}\right) / p \operatorname{Hom}\left(E_{i}, E_{j}\right) \cong(\boldsymbol{Z} / p \boldsymbol{Z})^{2} . \quad$ q.e.d.

Definition. We call $x \in E_{1}$ a zero of $\operatorname{Hom}\left(E_{1}, E_{2}\right)$, if $x \neq 0$ and $f(x)=0$ for all $f \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$.

Lemma 2. Let E_{1} be isogenous to E_{2} with complex multiplication. If there exists a zero $a_{1} \in\left(E_{1}\right)_{p}$ of $\operatorname{Hom}\left(E_{1}, E_{2}\right)$, then there exist no zeros of $\operatorname{Hom}\left(E_{2}, E_{1}\right)$ in $\left(E_{2}\right)_{p}$.

Proof. Suppose there exists a zero of $\operatorname{Hom}\left(E_{2}, E_{1}\right)$ in $\left(E_{2}\right)_{p}$, say a_{2}. Choose suitable elements $b_{1} \in\left(E_{1}\right)_{p}$ and $b_{2} \in\left(E_{2}\right)_{p}$ such that $\left(E_{1}\right)_{p}$ $\cong\left\langle a_{1}\right\rangle \times\left\langle b_{1}\right\rangle$ and $\left(E_{2}\right)_{p} \cong\left\langle a_{2}\right\rangle \times\left\langle b_{2}\right\rangle$. Since a_{1} is a zero of Hom $\left(E_{1}, E_{2}\right)$, we have $I_{12} \cong \operatorname{Hom}_{F_{p}}\left(\left\langle b_{1}\right\rangle,\left(E_{2}\right)_{p}\right)$ by Lemma 1. So there exists $f \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ such that

$$
f:\left\{\begin{array}{l}
a_{1} \rightarrow 0 \tag{4}\\
b_{1} \rightarrow b_{2} .
\end{array}\right.
$$

We also have $I_{21} \cong \operatorname{Hom}_{F_{p}}\left(\left\langle b_{2}\right\rangle,\left(E_{1}\right)_{p}\right)$. So there exist two homomorphisms $g_{i} \in \operatorname{Hom}\left(E_{2}, E_{1}\right)(i=1,2)$ such that

$$
g_{1}:\left\{\begin{array}{l}
a_{2} \rightarrow 0 \tag{5}\\
b_{2} \rightarrow a_{1},
\end{array} \quad g_{2}:\left\{\begin{array}{l}
a_{2} \rightarrow 0 \\
b_{2} \rightarrow b_{1} .
\end{array}\right.\right.
$$

Thus, we have two endomorphisms $g_{i} \circ f \in \operatorname{End}\left(E_{1}\right)(i=1,2)$ such that

$$
g_{1} \circ f:\left\{\begin{array}{l}
a_{1} \rightarrow 0 \tag{6}\\
b_{1} \rightarrow a_{1},
\end{array} \quad g_{2} \circ f:\left\{\begin{array}{l}
a_{1} \rightarrow 0 \\
b_{1} \rightarrow b_{1} .
\end{array}\right.\right.
$$

The matrices associated with $r_{11}\left(i d_{E_{1}}\right), r_{11}\left(g_{1} \circ f\right), r_{11}\left(g_{2} \circ f\right)$ (relative to the basis $\left\{a_{1}, b_{1}\right\}$) are respectively given as follows:

$$
\left(\begin{array}{ll}
1 & 0 \tag{7}\\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Hence, $\operatorname{dim} I_{11} \geqq 3$, which contradicts Lemma 1. q.e.d.

Lemma 3. Let E_{1} and E_{2} be two elliptic curves, and $a_{i} \in E_{i}(i=1,2)$ be two points of order p. Moreover, we assume there exists a homomorphism $f \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ such that $f\left(a_{1}\right) \in\left\langle a_{2}\right\rangle^{*}$. Then, there exists an automorphism φ of $E_{1} \times E_{2}$ such that $\varphi\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right)$.

Proof. Since $f\left(a_{1}\right) \neq 0$ and $f\left(a_{1}\right) \in\left\langle a_{2}\right\rangle$, there exists an integer n such that $a_{2}=n f\left(a_{1}\right)$. The automorphism φ of $E_{1} \times E_{2}$ defined by

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}-n f\left(x_{1}\right)\right) \tag{8}
\end{equation*}
$$

has the required property.
q.e.d.

Lemma 4. Let E_{1}, E_{2} and E_{3} be three elliptic curves, and $a_{i} \in E_{i}$ ($i=1,2,3$) be three points of order p. Moreover, we assume there exist homomorphisms $f_{i} \in \operatorname{Hom}\left(E_{i}, E_{3}\right)(i=1,2)$ such that $f_{i}\left(a_{i}\right)(i=1,2)$ are linearly independent over F_{p} in $\left(E_{3}\right)_{p}$. Then, there exists an automorphism ψ of $E_{1} \times E_{2} \times E_{3}$ such that $\psi\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{2}, 0\right)$.

Proof. By the assumption, there exist two integers n_{1}, n_{2} such that $a_{3}=n_{1} f_{1}\left(a_{1}\right)+n_{2} f_{2}\left(a_{2}\right)$. Therefore, it is sufficient to define ψ by

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{3}-n_{1} f_{1}\left(x_{1}\right)-n_{2} f_{2}\left(x_{2}\right)\right) . \quad \text { q.e.d. } \tag{9}
\end{equation*}
$$

4. Reduction of the proof of the theorem. We use the same notations as in (1), (2) of 2, and assume $a_{i} \neq 0$ for $i=1,2, \cdots, g$. By Lemma 2, we can assume a_{1} is not a zero of $\operatorname{Hom}\left(E_{1}, E_{2}\right)$, i.e., there exists $f \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ such that $f\left(a_{1}\right) \neq 0$. If $f\left(a_{1}\right) \in\left\langle a_{2}\right\rangle^{*}$, there exists by Lemma 3 an automorphism $\varphi \times i d_{E_{3} \times \cdots \times E_{g}}$ of $E_{1} \times \cdots \times E_{g}$ such that $\varphi \times i d_{E_{3} \times \cdots \times E_{g}}\left(a_{1}, a_{2}, \cdots, a_{g}\right)=\left(a_{1}, 0, a_{3}, \cdots, a_{g}\right)$. Hence, the assertion follows by induction hypothesis. Therefore, we can assume $\left(E_{2}\right)_{p} \cong\left\langle a_{2}\right\rangle$ $\times\left\langle f\left(a_{1}\right)\right\rangle$.

Applying Lemma 3 or Lemma 4, we can find an automorphism ψ of $E_{1} \times \cdots \times E_{g}$ satisfying the condition (3) of 2 in each of the following cases:
(i) There exists $g \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$ such that $g\left(a_{2}\right) \in\left\langle a_{3}\right\rangle^{*}$.
(ii) There exists $g \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$ such that $g\left(f\left(a_{1}\right)\right) \in\left\langle a_{3}\right\rangle^{*}$.
(iii) a_{2} is a zero of $\operatorname{Hom}\left(E_{2}, E_{3}\right)$.
(iv) $f\left(a_{1}\right)$ is a zero of $\operatorname{Hom}\left(E_{2}, E_{3}\right)$.
(v) There exist two homomorphisms $g_{1}, g_{2} \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$ such that $g_{1}\left(f\left(a_{1}\right)\right)$ and $g_{2}\left(a_{2}\right)$ are linearly independent in $\left(E_{3}\right)_{p}$.

For instance, in the case (iii), there exists $g \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$ such that $g\left(f\left(a_{1}\right)\right)=a_{3}$ by the fact that $I_{23} \cong \operatorname{Hom}\left(\left\langle f\left(a_{1}\right)\right\rangle,\left(E_{3}\right)_{p}\right)$. So the assertion follows by Lemma 3. Putting these together, we have only to consider the case satisfying the following two conditions:
(A) For any $g \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$, neither $g\left(a_{2}\right)$ nor $g\left(f\left(a_{1}\right)\right)$ is not contained in $\left\langle a_{3}\right\rangle^{*}$, and neither a_{2} nor $f\left(a_{1}\right)$ is a zero of $\operatorname{Hom}\left(E_{2}, E_{3}\right)$.
(B) $V=\left\{g(a) \mid g \in \operatorname{Hom}\left(E_{2}, E_{3}\right), a \in\left(E_{2}\right)_{p}\right\}$ is a one dimensioal linear subspace of $\left(E_{3}\right)_{p}$.

If there exists $g \in \operatorname{Hom}\left(E_{3}, E_{2}\right)$ such that $g\left(a_{3}\right) \notin\left\langle f\left(a_{1}\right)\right\rangle$, then we have $\left(E_{2}\right)_{p} \cong\left\langle f\left(a_{1}\right)\right\rangle \times\left\langle g\left(a_{3}\right)\right\rangle$. So, there exist two integers n_{1}, n_{2} such that $a_{2}=n_{1} f\left(a_{1}\right)+n_{2} g\left(a_{3}\right)$. In this case, the assertion follows by Lemma 4. So we can assume one more condition:
(C) For any $g \in \operatorname{Hom}\left(E_{3}, E_{2}\right)$, we have $g\left(a_{3}\right) \in\left\langle f\left(a_{1}\right)\right\rangle$.
5. In this last section, we shall prove that there exists no case satisfying the conditions (A) (B) (C). Let v be a basis of a one dimensional vector space V in (B). Then, $\left(E_{3}\right)_{p} \cong\left\langle a_{3}\right\rangle \times\langle v\rangle$. Let g_{1}, g_{2} be two homomorphisms of $\operatorname{Hom}\left(E_{2}, E_{3}\right)$ inducing a basis of I_{23}. By the condition (B), it is easy to see that they can be normalized in the following form :

$$
g_{1}:\left\{\begin{array}{l}
a_{2} \rightarrow 0 \tag{10}\\
f\left(a_{1}\right) \rightarrow k_{1} v,
\end{array} \quad g_{2}:\left\{\begin{array}{l}
a_{2} \rightarrow k_{2} v \\
f\left(a_{1}\right) \rightarrow 0,
\end{array}\right.\right.
$$

where $k_{i}(i=1,2)$ are non-zero integers.
On the other hand, let h_{1}, h_{2} be two homomorphisms of $\operatorname{Hom}\left(E_{3}, E_{2}\right)$ such that $h_{i}(i=1,2)$ inducing a basis of I_{32}. By the condition (C), they can be normalized in the following form:

$$
h_{1}:\left\{\begin{array}{ll}
a_{3} \rightarrow 0 \tag{11}\\
v \rightarrow m_{1} f\left(a_{1}\right)+m_{2} a_{2},
\end{array} \quad h_{2}: \begin{cases}a_{3} \rightarrow n_{1} f\left(a_{1}\right) \\
v \rightarrow \begin{cases}n_{2} a_{2} & \text { if } m_{1} \neq 0 \\
n_{2} f\left(a_{1}\right) & \text { if } m_{1}=0,\end{cases} \end{cases}\right.
$$

where $m_{i}(i=1,2), n_{j}(j=1,2)$ are rational integers and at least one of m_{i} is not zero.

First, suppose $n_{1} \neq 0$. Then, we have an endomorphism $g_{1} \circ h_{2}$ \in End (E_{3}) such that

$$
g_{1} \circ h_{2}: \begin{cases}a_{3} \rightarrow k_{1} n_{1} v \tag{12}\\ v \rightarrow \begin{cases}0 & \text { if } m_{1} \neq 0 \\ k_{1} n_{2} v & \text { if } m_{1}=0\end{cases} \end{cases}
$$

Moreover, we have an endomorphism of End $\left(E_{3}\right)$ such that

$$
\begin{align*}
& g_{1} \circ h_{1}:\left\{\begin{array}{l}
a_{3} \rightarrow 0 \\
v \rightarrow k_{1} m_{1} v,
\end{array} \quad \text { if } m_{1} \neq 0,\right. \tag{13}\\
& g_{2} \circ h_{1}:\left\{\begin{array}{l}
a_{3} \rightarrow 0 \\
v \rightarrow k_{2} m_{2} v,
\end{array} \text { if } m_{1}=0\right.
\end{align*}
$$

Thus, $\left\{r_{33}\left(g_{1} \circ h_{2}\right), r_{33}\left(g_{1} \circ h_{1}\right)\right\}$ if $m_{1} \neq 0$ or $\left\{r_{33}\left(g_{1} \circ h_{2}\right), r_{33}\left(g_{2} \circ h_{1}\right)\right\}$ if $m_{1}=0$ is a basis of two dimensional vector space I_{33}. On the other hand, $i d_{E_{3}} \in$ End (E_{3}) induces a nontrivial element of I_{33}, and it is clear that the element cannot be expressed by the linear combination of such a basis, which is a contradiction.

Hence, we have $n_{1}=0$. But in this case, a_{3} is a zero of $\operatorname{Hom}\left(E_{3}, E_{2}\right)$. Therefore, as before, we have two homomorphisms $h_{1}^{\prime}, h_{2}^{\prime} \in \operatorname{Hom}\left(E_{2}, E_{2}\right)$ such that

$$
h_{1}^{\prime}:\left\{\begin{array}{l}
a_{3} \rightarrow 0 \tag{14}\\
v \rightarrow a_{2},
\end{array} \quad h_{2}^{\prime}:\left\{\begin{array}{l}
a_{3} \rightarrow 0 \\
v \rightarrow f\left(a_{1}\right)
\end{array}\right.\right.
$$

So we have four non-trivial endomorphisms $r_{22}\left(h_{1}^{\prime} \circ g_{1}\right), r_{22}\left(h_{2}^{\prime} \circ g_{1}\right), r_{22}\left(h_{1}^{\prime} \circ g_{2}\right)$, $r_{22}\left(h_{2}^{\prime} \circ g_{2}\right)$. The matrices associated with them relative to the basis $\left\{a_{2}, f\left(a_{1}\right)\right\}$ are respectively as follows:

$$
\left(\begin{array}{cc}
0 & k_{1} \tag{15}\\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 0 \\
0 & k_{1}
\end{array}\right), \quad\left(\begin{array}{cc}
k_{2} & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
k_{2} & 0
\end{array}\right)
$$

They are linearly independent in I_{22}, which contradicts Lemma 1. Hence, there exists no case satisfying the conditions (A) (B) (C), and we complete our proof.

References

[1] D. Mumford: Abelian Variety. Oxford Univ. Press (1970).
[2] T. Shioda: Algebraic Cycles on Certain K3 Surfaces in Characteristic p. Proc. Int. Conf. on Manifolds. Tokyo (1973).
[3] T. Shioda and N. Mitani: "Singular abelian surfaces and binary quadratic forms," in Classification of Algebraic Varieties and Compact Complex Manifold, Lecture Notes in Mathematics 412. Berlin-Heidelberg-New York, Springer (1974).

