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A Partial Differential Equation for
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1. Introduction. R. Thom ([1], p. 176) proposed a model to
explain the gastrulation of the Amphibia. Let C(R) be the space of
C-unctions on R, let D denote the three dimensional ball in R and
let T be the axe of time. His static model is a mapping F:D T
C(R). In the space C(R) there is a subset X of functions which
are not stable. This set is called the bifurcation set. The inverse
image of this set F-(X) (or its subset) is called the catastrophe set.
According to his catastrophe theory, F is transversal to the bifurcation
strates and the catastrophe set is a stratified set such that any point
of the set has a neighbourhood which is isomorphic to elementary
catastrophes.

In his book [1], he tries to explain the gastrulation of the Amphibia
by a static model whose organizing center is a swallow’s tail.

In this paper a partial differential equation on the sphere S is
studied. For some initial data, the solution generates a shock wave
which is just R. Thom described in his book, and that the solution is
stable under the perturbation of the initial data and the equation.

Next, a static model is constructed out of the partial differential
equation and the initial data. The catastrophe set of this static model
simulates the gastrulation o Amphibia.

It is quite interesting that in our model, the gradient of animal-
vegetative potential and the initial data which has a peak in the area
o the gray crescent play the essential role.

The role which is played by a swallow’s tail in Thom’s model is
played by a cusp in our model.

The author is grateful to Professor M. Yamaguti for advices and
encouragement.

2. Quasi.linear partial differential equation on S. Let S be
the unit sphere S={x e Rilxl--1}. S is a Riemannian manifold with
Riemannian metric g induced from the standard inner product of R.
Let b:SZR be a C-function on Sz. At each point x eS, the
Riemannian metric g gives an isomorphism of the cotangent space T*S
and the tangent space TS. Define the gradient vector field Vb of. b
as follows. For each point x e S, gb is the vector which corresponds
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to the convector db, the exterior derivative of b, i.e. gb is the unique
vector such that or any vector v in TS, g(Vb, v)=db(v). Let A: R
R be a smooth function such that the second order derivative is
strictly positive A"(u)>>O. Let a(u)=A’(u). Let T denote the axe
o time and let its coordinate t. Let (, } denote the Riemannian
metric, i.e. (v, v} g(v, v).

Cosider the Cauchy problem for the following partial differential
equation,

0u +(VA(u), Vb}=0 ( 1 )
t

where u is the unknown unction u" SX TR, with initial condition

: S x 0-*R, and V denotes the gradient vector field with respect to S.
The equation (1) is also written as

3u +a(u)(Vu, Vb}--0. 2 )
3t

The equation tells that the value of u depends only on the initial
data on the trajectory o the vector field Vb which runs through the
point.

3. The equation on the trajectory. Let a one-dimensional
submaniold L o S be a trajectory o the gradient vector field Vb.
Parametrize the trajectory by the length. Let denote the length of
the trajectory L. Then the parametrization is a mapping of the open
interval L=(0, l) to L.

Take a point p in L and define a local coordinate (x, y) around p
so that the amily o curves y=eonstant are trajectories o Vb and the
amily of eurves x=eonstant are local level manifolds of b, and that
0 =1. Thenvectors 0 and 0 makeanorthonormalbasis

of. T,S. Therefore the gradient vector t p is expressed s
Ob O[Vb, -- p)- , +--tP - ,

3bbut by the definition of the local coordinate, ---(p)=0. Hence the

equation (2) is transormed into a quasi-linear equation on I x T,
Ou

_
a(u) Ob Ou

=- =0. ( 3 )x 3x

As p may be any point in L, the equation (2) is equivalent to (3). This
argument is good wherever Vb=/=O. Where Vb-O, the equation tells
that u remains constant there.

Next, we transform the equation into a conservation law. Take
a point P0 in I--(0, 1). Define a diffeomorphism h of I into R by
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h(x)= dx
o b
x

As ___b is o constant signature on I, dh never wnishes.x dx
Let I denote the image h(I) i R. We denote the coordinate o

I by . Note that
u (x)- (uoh-9
x (h(x)). -a-E(x)"

Let t=uoh-, t: L, TR. Then the equation (3) is transformed into
a quasi-linear equation

a a() au =o ( 4 )

that is to say
au + a A(a) 0 ( 5 )

This equation is well known. In particular, or an initial data " I--+R, if there is a point x0 in I such that
’(x0)<o, "(x0)=o, "’(x0)>o (6)

then at time to=- 1 at Xo + a((Xo))t, it generates a shock
a’((Xo))’(Xo)

wave.
Remark. The argument above is good also for ay Riemannian

manifold. The weak solutions of (5) make a global solution of (1),
because we have transformed only by changes o local coordinates.

4. Construction of a model for morphogenesis. We construct
a model which will generate a ’blastopore’. For the functions A" R

-*R and a" RoR, take the simplest functions A(u)=lu and a(u)=u
2

so that a’(u) 1O.
Let b:SoR be the animal-vegetative potential, i.e. a smooth

function on S with two non-degenerate critical points. For example,
b(x) x, x (x, x, x) e R, S={x e Rlx[ + x+x= 1}, in this case, the
point (0, 0, 1)corresponds to the vegetative pole and (0, 0,--1) to the
animal pole. Trajectories of the gradient vector field are the longitudes.

Parametrize S-{(0, 0,- 1)U (0, 0,1)} by the longitude t e R/2uZ and
7 7

COS X,the latitude x, --x, so that b(x,t)=sinx. Then 3b
3x

1=( = )I (--oo oo) Takep0 0eI

h(x)=: cosdXx =log (tan (-+-)).
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Next, define a function Z: RR such that lim Z(p)=0, Z()>0 and

that there is a unique point % e R which satisfies Z’(P0)0, Z"(0)=0,
Z’"(P0)0 and %0. For example Z()=exp (_2).

Define the maps Z,, RR for p, a e R by
,()=Z().

Then at time t(p, a)= 1 1 the solution of the equa-

tion (5) with initial condition (p, 0)=Z,, breaks and generates a shock

at (P0- + -Z(0.- Let S=R/2Z be the circle of longitudes.wave
Z’(%) /

Define a map : SI so that the graph of is the set of end points
of blastopore at each time. Define also a map r:ST so that for
each longitude e S, r(0) is the time when the end point of the blasto-
pore passes. The image of the graph map ids r SS T
defines a circle C in S2X T. (Cf. R. Thom [1] p. 177.)

Define maps a: SR and p: SR by

0- z(0)

() z’(0)
hy(O)

1p()
r(O)a(O)Z’(o)

Finally define the initial condition :SR by

(x, ) Z,(h(x))
and ((0, 0, 1))=((0, 0, -1))=0. For this initial data, the equation
(1) will generate a gastrulation o type C.. The relation between our model and Thorn’s static model.
D. Schaeffer [2] defined a static model for conservation laws such that
the catastrophe set of the static model is just where the shock wave
runs. Our static model is slightly modified so as ot to decay when

First, define a static model on SIT, i.e. a field of smooth
maps F S I T RR by

F(, x, t, u)-u.a(u)-A(u)-
where is the restriction of the initial data ,

S >R

S X I}o,h_ I
Pot a bounded time interval no henomenon occurs a both oles
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so that this static model can be extended overS T. The catastrophe
set of this model corresponds to our shock wave.
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