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In this paper we shall state, without proofs, some proof-theoretic
results concerning dense linear orderings and countable well-orderings
(Theorems A and A below). By using them and some extended forms
of relativization theorem in Motohashi [3] and [4], we shall give purely
syntactic proofs of Lopez-Escobar’s Theorem and Morley’s Theorem
on undefinability of well-orderings ((i) and (ii) of Theorem 12 in
Keisler [1]).

Let L be a first order infinitary logic with countable conjunctions,
countable disjunctions and equality (L, in the sense of H. J. Keisler’s
Book [1]). We assume that L has at least one binary predicate symbol
< but no individual constants nor function symbols. By L0 we denote
the sublogic of L which is obtained from L by deleting all the predicate
symbols except . Let DO be the axiom of dense linear orderings
without endpoints and WO be the axiom of well-orderings of type a,
for each countable ordinal (see Scott [2]). Then clearly DO and
WO. are sentences in L0. A formula A in L is said to be existential
if A is obtained from atomic formulas and their negations by some
applications of / (countable conjunction), V (countable disjunction)
and ii (existential quantification).

Our first result is the following
Theorem A. Suppose that A is an existential formula in L. Then

the sentence DO-.A is provable in L if and only if the sentence WO
-A is provable in L for some countable ordinal number c.

In order to obtain a syntactic proof of Lopez-Escobar’s Theorem
((i) of Theorem 12 in [1]), we require the following form of relativization
theorem which is mentioned in [3] and [4].

Suppose P is an unary predicate symbol which does not appear in
L. By L(P), we denote the logic obtained from L by adding P as a
new predicate symbol. For each formula A in L, by Ae we denote
the formula in L(P), which is obtained from A by relativizing every
occurrence of quantifiers in A by P. Using these notations, we can
express the relativization theorem in the following required style.

Theorem B. If A and B are sentences in L and (3v)P(v) /Ae-B
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is provable in L(P), then there is an existential sentence C in L such
that A-C and CoB are provable in L.

By using Theorems A and B, we have the ollowing
Theorem C (Lopez-Escobar). Suppose that T is a countable set

of sentences in L. Then (]v)P(v), DOe, T is consistent if and only if
(]v)P(v), WOf, T is consistent for every countable ordinal number .

Proof. (v)P(v), DOe, T is iaconsistent
-(v)P(v)ADO -/T

==@-DO--.A and -A-,-/k T 2or some existential sentence A
@==WO-.A and -A-*- A T or someaand existential sentence

A
(v)P(v)/WOf- AT for some <(o

==(]v)P(v), WOe,, T is inconsistent for some a<. q.e.d.
On the other hand we require more delicate arguments to obtain

a syntactic proof of Morley’s Theorem. For each countable admissible
set , let L be the sublogic of L,o restricted to (cf. [1]). Note
the fact that WO eL for each a in 4. Suppose that A is an exis-
tential formula in L and X a finite set of free variables such that every
free variable in A belongs to X. We define the degree of existence
of A and X (denoted by d.e. (A, X)) by the following conditions"

( ) d.e.(A, X)=0 if A is an atomic formula or its negation;

(ii) d.e.(y A, X)=-sup d.e.(A, X)

(iii) d.e.( A, X)=(sup\ d.e.(A, X)).(n/ 1), where n=.;
(iv) d.e.((]v)A(v),X)=d.e.(A(y),XJ{y})+l, where y is a free

variable which does not belong to X.
Clearly d.e.(A,X) is a countable ordinal number. Furthermore if
A e , then d.e.(A, X) is an ordinal number in. Note that d.e.(A, X)
=0 for each open formula A. Let d.e.(A)=d.e.(A,) for each exis-
tential sentence A in L, where is the empty set. Then we have the
following lemma which is used in the proofs of Theorem A above and
Theorem A’ below.

Lemma. Suppose that A is an existential sentence in Lo. Then
the sentence DOoA is provable in Lo if and only if the sentence
WO..()-A is provable in Lo.

Also we require the following form of relativization theorem which
is remarked by Mr. K. Shirai.

Theorem B’. If A and B are sentences in L and (]v)P(v)/A
-oB is provable in L(P), then there is an existential sentence C inL
such that AC and CB are provable in L and every predicate
symbol in C occurrs both in A and in B.

By using our Lemma and Theorem B’ we have the following
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Theorem A’. Suppose that A is an existentia sentence in L.
Then the sentence DO--.A is provable in L i[ and only i[ the sentence
WO--A is provable in L [or some ordina number a in .

By using Theorems A’ &rid B’ instead o Theorems A and B in the
proof o Theorem C, we have ollowing

Theorem C’ (Morley). Suppose that T is a countable set o[
sentences in L4 such that T is X on . Then (]v)P@), DO, T is con-
sistent i[ and only i[ (v)P@), WOVe, T is consistent [or eery in .
[]
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