83. Central Class Numbers in Central Class Field Towers

By Susumu Shirai

Department of Liberal Arts and Sciences, Chubu Institute of Technology, Kasugai

(Comm. by Kenjiro SHODA, M. J. A., June 3, 1975)

1. Introduction. Let $K_0=k$ be an algebraic number field of finite degree and K_n be the central class field of K_{n-1} over k, i.e. the maximal unramified abelian extension over K_{n-1} such that the Galois group of K_n over K_{n-1} is contained in the center of the Galois group of K_n over k. Then the sequence of fields

$$k = K_0 \subseteq K_1 \subseteq \cdots K_{n-1} \subseteq K_n \subseteq \cdots$$

is called the central class field tower of k, and the extension degree $z_n = [K_{n+1}: K_n]$ is called the central class number¹⁾ of K_n over k. $z_0 = [K_1: k]$ is the class number of k.

The existence of algebraic number fields admitting infinite central class field towers is shown by Golod and Šafarevič [5]. In connection with the result, Brumer [2], Furuta [4] and Roquette [7] estimate lower bounds on the l-rank of the ideal class group of a finite Galois extension, where l is a rational prime.

The aim of the present paper is to give an upper bound on the central class number z_n of K_n over k (Main Theorem) and also to give an upper bound on the rank of the Galois group of K_{n+1} over K_n (Theorem 5).

Main Theorem. Let z_n be as above and d be the minimal number of generators of the ideal class group of k. Then we have

$$z_{n-1}^d \equiv 0 \pmod{z_n}$$
 for $n > 1$

and

$$z_0^{z_0(d-1)} \equiv 0 \pmod{z_1}$$
 for $n=1$.

In particular,

$$h^{h(d-1)d^{n-1}} \equiv 0 \pmod{z_n} \quad for \ n \geq 1,$$

where $h=z_0$ is the class number of k.

2. Notation. Throughout this paper the following notation will be used.

Z the ring of rational integers

Q the field of rational numbers

 K^* the multiplicative group of all non-zero elements of a field K

 J_K the idele group of a finite algebraic number field K

¹⁾ Cf. Furuta [3].

 U_K the unit idele group²⁾ of a finite algebraic number field K

 E_k the unit group of a finite algebraic number field k

 $N_{K/k}$ the Norm of K to k

G(K/k) the Galois group of a Galois extension K over k

 I_K the ideal group of a finite algebraic number field K

 $I_{K/k}$ the subgroup of I_K consisting of ideals whose norm to k are principal in k

 I_K^D the subgroup of I_K generated by the ideals $\mathfrak{a}^{\sigma^{-1}}$ such that $\mathfrak{a} \in I_K$ and $\sigma \in G(K/k)$

(H) the principal ideal group induced from a number group H in k

d(G) the minimal number of generators of a finite group G

|G| the number of elements of a finite group G

3. The central class number. Let k be an algebraic number field of finite degree and K be a finite unramified Galois extension of k. Since U_K is cohomologically trivial as a G(K/k)-module, the exact sequence

$$1 \rightarrow U_K \rightarrow J_K \rightarrow I_K \rightarrow 1$$

gives an isomorphism

$$H^{-1}(G(K/k), I_K) \cong H^{-1}(G(K/k), J_K) = 0.$$
 (1)

Therefore, if $N_{K/k}\alpha=1$ for $\alpha \in I_K$, we have $\alpha \in I_K^D$, where 1 denotes the unit element of I_K .

Lemma 1. Let $H = k^* \cap N_{K/k}J_K$ and K/k be a finite unramified Galois extension. Then we have

$$I_{K/k}/I_K^D \cdot (K^*) \cong (H)/(N_{K/k}K^*)$$

and the isomorphism is induced from $N_{K/k}$.

Proof. Let $\mathfrak p$ be a finite prime in k and $\mathfrak p$ be a prime factor of $\mathfrak p$ in K. By the local theory we know that an element of $k_{\mathfrak p}^*$ is a norm from $K_{\mathfrak p}^*$ if and only if its normalized exponential valuation at $\mathfrak p$ is divisible by the degree of $\mathfrak p$ over $\mathfrak p$. Thus $N_{K/k}$ is an epimorphism of $I_{K/k}$ to (H), because K is an unramified extension over k. Suppose that $N_{K/k} \mathfrak a \in (N_{K/k} K^*)$ for $\mathfrak a \in I_{K/k}$, then there exists $\mathfrak a$ in K^* such that $N_{K/k} \mathfrak a \mathfrak a = 1$. Thus by (1) we have $\mathfrak a \in I_K^p \cdot (K^*)$. This completes the proof.

Lemma 2. Let K/k be a finite unramified Galois extension. Then the sequence

$$1 \rightarrow E_k/E_k \cap N_{K/k}K^* \rightarrow H^{-3}(G(K/k), Z) \rightarrow I_{K/k}/I_K^p \cdot (K^*) \rightarrow 1$$

The Moreover if K contains the Hilbert class field of k, then

is exact. Moreover if K contains the Hilbert class field of k, then we have³⁾

$$z_{K/k} = |H^{-3}(G(K/k), Z)|/[E_k : E_k \cap N_{K/k}K^*],$$

²⁾ The infinite components of U_K are the same as those of J_K .

³⁾ The last formula follows also from a general formula of the central class numbers in Furuta [3].

where $z_{K/k}$ denotes the central class number of K over k.

Proof. Let H be as in Lemma 1. By local class field theory, we see $H \supseteq E_k$. Thus,

$$(H)/(N_{K/k}K^*) \cong H/E_k \cdot N_{K/k}K^* \cong \frac{H/N_{K/k}K^*}{E_k \cdot N_{K/k}K^*/N_{K/k}K^*}.$$

It is well-known that if K/k is an unramified Galois extension, then $H^{-3}(G(K/k), Z) \cong H/N_{K/k}K^*$. So, the exact sequence holds. Moreover if K contains the Hilbert class field of k, then we have $I_{K/k} = I_K$. By global class field theory, the central class field of K over k corresponds to the ideal group $I_K^p \cdot (K^*)$. This completes the proof.

4. The Schur Multiplicator. We note that $H^{-3}(G, Z)$ is isomorphic to the Schur multiplicator $H^2(G, Q/Z)$ of G, where G acts trivially on Q/Z. Now, let G be a finite nilpotent group of class n, and let

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_{n-1} \supset G_n = 1 \tag{2}$$

and

$$G = Z_n \supset Z_{n-1} \supset Z_{n-2} \supset \cdots \supset Z_1 \supset Z_0 = 1$$

be the lower central series, the upper central series of G, respectively. Then it follows from [1, p. 212] the following

Lemma 3. Let G be a finite nilpotent group of class n>1. Then the sequence

$$0 \longrightarrow G_{n-1} \longrightarrow H^2(G/G_{n-1}, Q/Z) \xrightarrow{\inf} H^2(G, Q/Z) \longrightarrow \operatorname{Hom} (G/Z_{n-1}, G_{n-1})$$
 is exact.

It is clear that $|\text{Hom }(G/Z_{n-1},G_{n-1})|$ divides $|G_{n-1}|^{d(G/Z_{n-1})}$. Let $\Phi(G)$ be the Frattini subgroup of G. Then we have

$$\Phi(G) \supseteq [G, G] = G_1,$$

where [G, G] denotes the commutator subgroup of G. Since $d(G/\mathbb{Z}_{n-1}) \leq d(G) = d(G/\Phi(G)) \leq d(G/G_1)$,

|Hom $(G/Z_{n-1}, G_{n-1})$ | divides $|G_{n-1}|^{d(G/G_1)}$. Thus by Lemma 3 we have Lemma 4. If G is a finite nilpotent group of class n > 1, then $|H^2(G/G_{n-1}, Q/Z)| \cdot |G_{n-1}|^{d(G/G_1)-1} \equiv 0 \pmod{|H^2(G, Q/Z)|}$.

5. Proof of the Main Theorem. Let the situation be as in Section 1, and suppose that $z_{n-1} \neq 1$. We denote by G the Galois group of K_n over k. Then G is a finite nilpotent group of class n, and the lower central series (2) of G corresponds to the sequence of fields

$$k=K_0\subset K_1\subset K_2\subset\cdots\subset K_{n-1}\subset K_n$$
.

Thus, $|G_{n-1}|=[K_n:K_{n-1}]=z_{n-1}$. By Lemma 2 we have $|H^2(G/G_{n-1},Q/Z)|=z_{n-1}\cdot [E_k:E_k\cap N_{K_{n-1}/k}K_{n-1}^*]$

and

$$|H^{2}(G,Q/Z)| = z_{n} \cdot [E_{k} : E_{k} \cap N_{K_{n-1}/k}K_{n-1}^{*}] \cdot [E_{k} \cap N_{K_{n-1}/k}K_{n-1}^{*} : E_{k} \cap N_{K_{n}/k}K_{n}^{*}].$$

Therefore, if n>1, we have by Lemma 4

$$z_{n-1}^{d(G/G_1)} \equiv 0 \quad \text{(mod. } z_n),$$

where G/G_1 is isomorphic to the ideal class group of k. This completes the proof in case of n > 1.

Next, set n=1. Then G is an abelian group of order $z_0=h$. The following sequence

$$0 \longrightarrow Z/(h) \longrightarrow Q/Z \xrightarrow{h} Q/Z \longrightarrow 0$$

is exact, where h denotes the homomorphism induced by h times multiplication. Passing to cohomology, we have the exact sequence

$$0 \longrightarrow H^1(G, Q/Z) \longrightarrow H^2(G, Z/(h)) \longrightarrow H^2(G, Q/Z) \longrightarrow 0.$$

Since $H^1(G, \mathbb{Q}/\mathbb{Z}) \cong \text{Hom } (G, \mathbb{Q}/\mathbb{Z})$, we have

$$|H^2(G, Q/Z)| = |H^2(G, Z/(h))|/h.$$
 (3)

In the sequence

$$\cdots \longrightarrow C^1(G,Z/(h)) \stackrel{\delta^1}{\longrightarrow} C^2(G,Z/(h)) \stackrel{\delta^2}{\longrightarrow} C^3(G,Z/(h)) \longrightarrow \cdots,$$

let $C^i(G, \mathbb{Z}/(h))$ be the group of *i*-cochains of G in $\mathbb{Z}/(h)$ and δ^i be the coboundary operator. By definition, we have

$$H^{2}(G, \mathbb{Z}/(h)) = \ker \delta^{2}/\operatorname{im} \delta^{1}. \tag{4}$$

First,

$$|\operatorname{im} \delta^{1}| = |C^{1}(G, \mathbb{Z}/(h))|/|\operatorname{ker} \delta^{1}| = h^{h}/|\operatorname{Hom} (G, \mathbb{Z}/(h))| = h^{h-1}.$$

Next, let $\sigma_1, \sigma_2, \dots, \sigma_d$ be the minimal generators of G. Then a 2-cocycle f is trivial if its restriction on $\{\sigma_1, \sigma_2, \dots, \sigma_d\} \times G$ ($\subset G \times G$) is trivial. The number of mappings of $\{\sigma_1, \sigma_2, \dots, \sigma_d\} \times G$ into Z/(h) is h^{dh} . So, $|\ker \delta^2|$ divides h^{dh} . Thus by (4) $|H^2(G, Z/(h))|$ divides $h^{h(d-1)+1}$. We conclude by (3) that $|H^2(G, Q/Z)|$ divides $h^{h(d-1)}$. Therefore, by Lemma 2 we have

$$h^{h(d-1)} \equiv 0 \quad (\text{mod. } z_1).$$

This completes the proof in case of n=1.

6. An upper bound on the rank of $G(K_{n+1}/K_n)$. We give an upper bound on the rank of the Galois group $G(K_{n+1}/K_n)$ in the central class field tower of k.

Theorem 5. Let the situation and notation be as in Section 1. Then we have

$$d(G(K_{n+1}/K_n)) \leq (d+1) \cdot d(G(K_n/K_{n-1})) + r_1 + r_2 \qquad for \ n > 1$$

and

$$d(G(K_2/K_1)) \leq d \cdot h$$
 for $n=1$,

where r_1 is the number of real and r_2 the number of complex prime divisors of k. In particular,

$$d(G(K_{n+1}/K_n)) \le \{(d+1)^{n-1} \cdot (d^2 \cdot h + r_1 + r_2) - (r_1 + r_2)\}/d$$
 for $n \ge 1$.
Proof. By Lemma 2 we have⁵⁾

⁴⁾ This follows also from Schreirer's theorem [6, §36] and MacLane's theorem [6, §50].

⁵⁾ On a relationship between the ranks of modules in a exact sequence, see Brumer [2].

$$d(G(K_{n+1}/K_n)) \leq d(H^2(G,Q/Z)),$$

 $d(H^2(G/G_{n-1},Q/Z))\!\leq\! d(E_k/E_k\cap N_{K_{n-1}/k}K_{n-1}^*)+d(G(K_n/K_{n-1}))$ and also by Lemma 3

 $d(H^2(G, Q/Z)) \leq d(H^2(G/G_{n-1}, Q/Z)) + d \cdot d(G(K_n/K_{n-1})).$

It is clear that $d(E_k/E_k \cap N_{K_{n-1}/k}K_{n-1}^*) \leq r_1 + r_2$, which completes the proof in case of n > 1.

If n=1, then we obtain from Section 5 that

$$d(G(K_2/K_1)) \leq d(H^2(G, Q/Z)) \leq d(H^2(G, Z/(h))) \leq d(\ker \delta^2).$$

It can be easily checked that $d(\ker \delta^2) \leq d \cdot h$. This completes the proof in case of n=1.

References

- [1] A. Babakhanian: Cohomological Methods in Group Theory. Marcel Dekker, Inc., New York (1972).
- [2] A. Brumer: Ramification and class towers of number fields. Michigan Math. J., 12, 129-131 (1965).
- [3] Y. Furuta: Über die zentrale Klassenzahl eines relativ-galoisschen Zahlkörpers. J. Number Theory, 3, 318-322 (1971).
- [4] —: On class field towers and the rank of ideal class groups. Nagoya Math. J., 48, 147-157 (1972).
- [5] E. S. Golod and I. R. Šafarevič: On class field towers (in Russian). Izv. Akad. Nauk SSSR, 28, 261-272 (1964) (Amer. Math. Soc. Transl., 48(2), 91-102).
- [6] A. G. Kurosh: The Theory of Groups (2nd ed.) Gostehizdat, Moscow (1953) (in Russian). English translation published by Chelsea, New York (1955, 1956).
- [7] P. Roquette: On Class Field Towers. Proc. instr. conf. at Brighton (Algebraic Number Theory), 231-249 (1967).