81. A Note on Isolated Singularity. II

By Isao Naruki

Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., June 3, 1975)

0. Introduction. This is a brief résumé of the second half of the study whose first part has already been announced [3]. The main purpose is to investigate the structure of an isolated singularity when it admits a C^* -action, especially, to obtain some formula concerning the characters of the representations of C^* over various cohomology groups associated with the singularity.

1. Basic concepts. A C^* -action over an isolated singularity (X, x) is a family $T(c), c \in C^*$ of analytic homeomorphisms of X onto itself satisfying that T(c)x = x, $T(cc') = T(c)T(c')(c, c' \in C^*)$, and that $T: X \times C \Rightarrow (x, c) \rightarrow T(z)c \in X$ is analytic. Throughout this note we assume that the constants are the only invariant elements of $\Omega^0_{X,x}$ under this action. Let ξ be the generating vector field of this action. The interior multiplication $i(\xi)$ is an anti-derivation of Ω^{\cdot}_X regarded as the sheaf of graded algebra. It is well known that the Poincaré complex Ω^{\cdot}_X is acyclic in this case. However we have some more

Lemma 1. Under the above condition the sequences

$$\cdots \xrightarrow{d} \mathcal{H}^{0}_{x}(\Omega^{p}_{X}) \xrightarrow{d} \mathcal{H}^{0}_{x}(\Omega^{p+1}_{X}) \xrightarrow{d} \cdots$$
$$\cdots \xrightarrow{Q^{p}_{X}} \mathcal{Q}^{p-1}_{X} \xrightarrow{i(\xi)} \cdots \xrightarrow{i(\xi)} \Omega^{0}_{X} \xrightarrow{\alpha} (\iota_{x})_{*} C \longrightarrow 0$$

are exact, where ι_x denotes the inclusion $x \longrightarrow X$ and α the average map $\Omega^0_{X,x} \ni f \longrightarrow \int_0^1 T(e^{2\pi i\theta})^* f d\theta \in (\iota_x)_* C_x.$

If we set $\Omega_{\xi}^{p} = i(\xi)\Omega_{X}^{p+1}$, then we have the short exact sequences $0 \rightarrow \Omega_{\xi}^{p} \rightarrow \Omega_{X}^{p-1} \rightarrow 0$. From these we obtain the following Gysin type sequences

$$0 \longrightarrow \mathcal{H}^{0}_{x}(\Omega^{p}_{\xi}) \longrightarrow \mathcal{H}^{0}_{x}(\Omega^{p}_{X}) \longrightarrow \mathcal{H}^{0}_{x}(\Omega^{p-1}_{\xi}) \longrightarrow \cdots$$
$$\cdots \longrightarrow \mathcal{H}^{q}_{x}(\Omega^{p}_{\xi}) \longrightarrow \mathcal{H}^{q}_{x}(\Omega^{p}_{X}) \longrightarrow \mathcal{H}^{q}_{x}(\Omega^{p-1}_{\xi}) \longrightarrow \cdots$$

Using these, we can prove

Theorem 1. Let the notation and the assumption be as above. Assume that (X, x) satisfies the condition (L). Then $\mathcal{H}_x^q(\Omega_{\xi}^p) = 0$ for (p, q) such that $p+q \neq \dim X$, $q \neq p+1$, $q < \dim X$, and there are natural isomorphisms $\mathcal{H}_x^q(\Omega_X^p) \simeq \mathcal{H}_x^q(\Omega_X^{p+1})$ for (p, q) such that $p+q = \dim X$, $0 < q < \dim X$.

Remark. If $\dim X$ is even, the proof requires some technique from Kähler geometry, though we can avoid the use of this in case

 $\dim X$ is odd.

2. Formula for characteristic function. In the rest of this note we assume that (X, x) satisfies the condition (L). Let $0 \leq q < n = \dim X$ and denote by $\chi_X^q(t)$ the character of the representation of C^* on $\mathscr{H}_x^q(\mathscr{Q}_X^{n-q})$ (or on $\mathscr{H}_x^q(\mathscr{Q}_X^{n-q+1})$ in view of Theorem 1 if q > 0); that is,

 $\chi_X^q(t) = \operatorname{Tr} \left(T(t)^* \mid \mathcal{H}_x^q(\Omega_X^{n-q}) \right)$ where the notation in the largest parenthesis on the right denotes the endomorphism of $\mathcal{H}_x^q(\Omega_X^{n-q})$ induced by the action T(t). These are rational functions in t. In view of the Serre type duality we have $\chi_X^q(t) = \chi_X^{n-q+1}(t^{-1})$ for $2 \leq q \leq n-1$, so it is convenient to set $\chi_X^n(t) = \chi_X^1(t^{-1})$, $\chi_X^{n+1}(t) = \chi_X^0(t^{-1})$; further we define the characteristic function of the C^* action by

$$\chi_X(s,t) = \sum_{q=0}^{n+1} \chi_X^q(t) s^q.$$

Now let f be an analytic function on X such that $df_z \neq 0$ for $z \in X \setminus x$, $T(c)^* f = c^d f$ (d > 0). Then f(x) = 0 and $(Y, y) = (f^{-1}(0), x)$ is a new isolated singularity over which the action $T(c), c \in C^*$ induces a C^* -action. We consider $\chi_Y^0(t), \chi_Y^1(t), \dots, \chi_Y^n(t), \chi_Y(s, t)$ to be defined similarly. Then, using some argument in proving the result of [3], we obtain

Theorem 2. Let the assumption and the notation be as above. Then

(1)
$$s(\chi_{Y}(s,t)-s^{n}\chi_{Y}^{0}(t^{-1}))-t^{d}(\chi_{Y}(s,t)-\chi_{Y}^{0}(t))) = (t^{d}-1)(\chi_{X}(s,t)-\chi_{X}^{0}(t)-s^{n+1}\chi_{X}^{0}(t^{-1}))$$

Remark. The characters $\chi_X^0(t), \chi_Y^0(t)$ are in a sense computable; for example, according to Lemma 1, $\chi_X^0(t)$ is equal to an alternating sum of the characters on the spaces $\Omega_{X,x}^p$, p > n; to determine these spaces from the defining equation of (X, x) is easier comparing with the determination of the cohomology groups $\mathcal{H}_x^q(\Omega_X^p)$.

3. Application. Let $H_{x}^{p,q}$ $(0 \le q < n-1)$, $H_{Y}^{p,q}$ $(0 \le q < n-2)$ be the fixed part of $\mathcal{H}_{x}^{q+1}(\Omega_{x}^{p})$, $\mathcal{H}_{y}^{q+1}(\Omega_{Y}^{p})$ with respect to the action *T*; further define $H_{x}^{p,n-1}$, $H_{Y}^{p,n-2}$ as the dual spaces of $H_{x}^{n-p,0}$, $H_{Y}^{n-p-1,0}$ respectively. Then, as an application of Theorem 2, we have

Corollary 1. There are canonical direct sum decompositions

$$egin{aligned} H^r(Xackslash x,oldsymbol{C}) &= \sum\limits_{p+q=r} H^{p,q}_X \ H^r(Yackslash y,oldsymbol{C}) &= \sum\limits_{p+q=r} H^{p,q}_Y \end{aligned}$$

and natural exact sequences

$$0 \longrightarrow H^{n-1}(X \setminus x, \mathbb{C}) \longrightarrow H^{n-1}(X \setminus Y, \mathbb{C}) \longrightarrow H^{n-2}(Y \setminus y, \mathbb{C}) \longrightarrow 0$$

$$0 \longrightarrow H^n(X \setminus x, \mathbb{C}) \longrightarrow H^n(X \setminus Y, \mathbb{C}) \longrightarrow H^{n-1}(Y \setminus y, \mathbb{C}) \longrightarrow 0.$$

Remark. These direct sum decompositions also arise from the mixed Hodge structures of $X \setminus x$, $Y \setminus y$ in the sense of [1]. Thus, in this case, the characteristic function explains some aspect of the mixed

No. 6]

Hodge structure. Note also that this corollary shows the degeneracy of the spectral sequence $E_2^{p,q}(Y, y) = H^p(R^q \iota_* \iota^* \Omega_Y)(\iota \colon Y \setminus y \longrightarrow Y)$, and of $E_2^{p,q}(X, x)$ defined similarly.

Now we shall apply Theorem 1 and Theorem 2 to the study of algebraic manifolds. Let V be an n-dimensional submanifold in $P_{n+r}(C)$ and E the line bundle over V induced by the hyperplane sections. Since E^{-1} is negative, we can consider the quotient space $C(V) = E^{-1}/V$ by shrinking the zero section V into a point p, and we thus have isolated singularity (C(V), p). Now we assume that V is the intersection of r non-singular hypersurfaces of $P_{n+r}(C)$ which are situated in a general position. Then C(V) is a complete intersection, so it satisfies condition (L). (See [3].) Note that, on C(V), there is the natural C^{*-} action induced by the multiplication of C in the line bundle E^{-1} . We consider the functions $\chi_{C(V)}^{q}(t)$ ($0 \le q \le n+2$), $\chi_{C(V)}(s, t)$ to be defined with respect to this action. Now let $h^{p,q}(E^k)$ be the dimension of $H^q(V, \Omega^p(E^k))$ and let the polynomials $R^i(z_1, z_2, \dots, z_i)$ $i=1, 2, \dots$ be defined inductively by $R^1(z) = (z-1)^{n+r+1}$, $R^{i+1}(z_1, z_2, \dots, z_{i+1}) = (z_1R^i(z_2, z_3, \dots, z_{i+1}) - z_2R^i(z_1, z_3, \dots, z_{i+1}))/(z_2-z_1)$. Then we have

Corollary 2. The assumptions being as above, $H^q(V, \Omega^p(E^k)) = 0$ if $p+q \neq n$, 0 < q < n, $k \neq 0$; further, if a_1, \dots, a_r are the degrees of the hypersurfaces defining V, then the following congruence holds

$$\begin{split} \chi_{C(V)}(s,t) &\equiv \chi_{C(V)}^{0}(t) + s\chi_{C(V)}^{1}(t) + \sum_{p=1}^{n-1} s^{n-p+1}(-\delta_{p,n-p} + \sum_{k \in \mathbb{Z}} h^{p,n-p}(E^{k})t^{k}) \\ &\equiv \frac{t^{a_{1}}}{t^{a_{1}}-s} R^{r} \Big(\frac{t^{a_{1}}-1}{t-1}, \cdots, \frac{t^{a_{r}}-1}{t-1} \Big) \\ &+ s \sum_{j=1}^{r-1} \frac{\prod_{i=1}^{j} (1-t^{a_{i}})}{\prod_{i=1}^{j+1} (t^{a_{i}}-s)} R^{r-j} \Big(\frac{t^{a_{j+1}}-1}{t-1}, \cdots, \frac{t^{a_{r}}-1}{t-1} \Big) \end{split}$$

mod. s^{n+1}

where the last term should be regarded as a power series in s whose coefficients are rational functions in t. Moreover $\chi^1_{\mathcal{G}(V)}(t) - \sum_{k < n} h^{n,0}(E^k)t^k$

is a polynomial divisible by t^n .

This corollary, combined with Theorems 22.1.1–22.1.2 of Hirzebruch [2], determines all of the dimensions of $H^{q}(V, \Omega^{p}(E^{k}))$.

The details will appear elsewhere.

References

- Deligne, P.: Theorie de Hodge. II. Publ. Math. I. H. E. S. No. 40, pp. 5-57 (1971).
- [2] Hirzebruch, F.: Topological Methods in Algebraic Geometry. Springer Verlag (1966).

[3] Naruki, I.: A note on isolated singularity. I. Proc. Japan Acad., 51, 317-319 (1975).