81. A Note on Isolated Singularity. II

By Isao Naruki
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., June 3, 1975)
0. Introduction. This is a brief résumé of the second half of the study whose first part has already been announced [3]. The main purpose is to investigate the structure of an isolated singularity when it admits a C^{*}-action, especially, to obtain some formula concerning the characters of the representations of C^{*} over various cohomology groups associated with the singularity.

1. Basic concepts. A C^{*}-action over an isolated singularity (X, x) is a family $T(c), c \in C^{*}$ of analytic homeomorphisms of X onto itself satisfying that $T(c) x=x, T\left(c c^{\prime}\right)=T(c) T\left(c^{\prime}\right)\left(c, c^{\prime} \in C^{*}\right)$, and that $T: X \times C$ $\ni(x, c) \rightarrow T(z) c \in X$ is analytic. Throughout this note we assume that the constants are the only invariant elements of $\Omega_{X, x}^{0}$ under this action. Let ξ be the generating vector field of this action. The interior multiplication $i(\xi)$ is an anti-derivation of $\Omega_{\dot{x}}$ regarded as the sheaf of graded algebra. It is well known that the Poincare complex Ω_{x} is acyclic in this case. However we have some more

Lemma 1. Under the above condition the sequences

$$
\begin{aligned}
& \cdots \xrightarrow{d} \mathcal{F}_{x}^{0}\left(\Omega_{x}^{p}\right) \xrightarrow{d} \mathcal{H}_{x}^{0}\left(\Omega_{X}^{p+1}\right) \xrightarrow{d} \cdots \\
& \cdots \longrightarrow \Omega_{X}^{p} \xrightarrow{i(\xi)} \Omega_{x}^{p-1} \xrightarrow{i(\xi)} \cdots \xrightarrow{i(\xi)} \Omega_{X}^{0} \xrightarrow{\alpha}\left(\iota_{x}\right)_{*} C \longrightarrow 0
\end{aligned}
$$

are exact, where ι_{x} denotes the inclusion $x \hookrightarrow X$ and α the average map $\Omega_{X, x}^{0} \ni f \rightarrow \int_{0}^{1} T\left(e^{2 \pi i \theta}\right)^{*} f d \theta \in\left(\iota_{x}\right)_{*} \boldsymbol{C}_{x}$.

If we set $\Omega_{\xi}^{p}=i(\xi) \Omega_{X}^{p+1}$, then we have the short exact sequences $0 \rightarrow \Omega_{\xi}^{p} \rightarrow \Omega_{X}^{p} \rightarrow \Omega_{\xi}^{p-1} \rightarrow 0$. From these we obtain the following Gysin type sequences

$$
\begin{aligned}
& 0 \mathcal{H}_{x}^{0}\left(\Omega_{\xi}^{p}\right) \\
& \longrightarrow \mathscr{H}_{x}^{0}\left(\Omega_{x}^{p}\right) \longrightarrow \mathcal{H}_{x}^{0}\left(\Omega_{\xi}^{p-1}\right) \longrightarrow \cdots \\
& \mathcal{H}_{x}^{q}\left(\Omega_{\xi}^{p}\right) \longrightarrow \mathcal{H}_{x}^{q}\left(\Omega_{x}^{p}\right) \longrightarrow \mathcal{H}_{x}^{q}\left(\Omega_{\xi}^{p-1}\right) \longrightarrow \cdots .
\end{aligned}
$$

Using these, we can prove
Theorem 1. Let the notation and the assumption be as above. Assume that (X, x) satisfies the condition (L). Then $\mathcal{H}_{x}^{q}\left(\Omega_{\xi}^{p}\right)=0$ for (p, q) such that $p+q \neq \operatorname{dim} X, q \neq p+1, q<\operatorname{dim} X$, and there are natural isomorphisms $\mathscr{H}_{x}^{q}\left(\Omega_{X}^{p}\right) \simeq \mathcal{H}_{x}^{q}\left(\Omega_{X}^{p+1}\right)$ for (p, q) such that $p+q=\operatorname{dim} X, 0<q$ $<\operatorname{dim} X$.

Remark. If $\operatorname{dim} X$ is even, the proof requires some technique from Kähler geometry, though we can avoid the use of this in case
$\operatorname{dim} X$ is odd.
2. Formula for characteristic function. In the rest of this note we assume that (X, x) satisfies the condition (L). Let $0 \leqq q<n=\operatorname{dim} X$ and denote by $\chi_{X}^{q}(t)$ the character of the representation of C^{*} on $\mathscr{S}_{x}^{q}\left(\Omega_{X}^{n-q}\right)$ (or on $\mathscr{H}_{x}^{q}\left(\Omega^{n-q+1}\right)$ in view of Theorem 1 if $q>0$); that is,

$$
\chi_{X}^{q}(t)=\operatorname{Tr}\left(T(t)^{*} \mid \mathscr{H}_{x}^{q}\left(\Omega_{X}^{n-q}\right)\right)
$$

where the notation in the largest parenthesis on the right denotes the endomorphism of $\mathscr{H}_{x}^{q}\left(\Omega_{x}^{n-q}\right)$ induced by the action $T(t)$. These are rational functions in t. In view of the Serre type duality we have $\chi_{X}^{q}(t)=\chi_{X}^{n-q+1}\left(t^{-1}\right)$ for $2 \leqq q \leqq n-1$, so it is convenient to set $\chi_{X}^{n}(t)=\chi_{X}^{1}\left(t^{-1}\right)$, $\chi_{X}^{n+1}(t)=\chi_{X}^{0}\left(t^{-1}\right)$; further we define the characteristic function of the $C^{*}{ }_{-}$ action by

$$
\chi_{X}(s, t)=\sum_{q=0}^{n+1} \chi_{X}^{q}(t) s^{q} .
$$

Now let f be an analytic function on X such that $d f_{z} \neq 0$ for $z \in X \backslash x, T(c)^{*} f=c^{d} f(d>0)$. Then $f(x)=0$ and $(Y, y)=\left(f^{-1}(0), x\right)$ is a new isolated singularity over which the action $T(c), c \in C^{*}$ induces a C^{*}-action. We consider $\chi_{Y}^{0}(t), \chi_{Y}^{1}(t), \cdots, \chi_{Y}^{n}(t), \chi_{Y}(s, t)$ to be defined similarly. Then, using some argument in proving the result of [3], we obtain

Theorem 2. Let the assumption and the notation be as above. Then

$$
\begin{align*}
& s\left(\chi_{Y}(s, t)-s^{n} \chi_{Y}^{0}\left(t^{-1}\right)\right)-t^{d}\left(\chi_{Y}(s, t)-\chi_{Y}^{0}(t)\right) \tag{1}\\
& \quad=\left(t^{a}-1\right)\left(\chi_{X}(s, t)-\chi_{X}^{0}(t)-s^{n+1} \chi_{X}^{0}\left(t^{-1}\right)\right) .
\end{align*}
$$

Remark. The characters $\chi_{X}^{0}(t), \chi_{Y}^{0}(t)$ are in a sense computable; for example, according to Lemma $1, \chi_{X}^{0}(t)$ is equal to an alternating sum of the characters on the spaces $\Omega_{x, x}^{p}, p>n$; to determine these spaces from the defining equation of (X, x) is easier comparing with the determination of the cohomology groups $\mathcal{F}_{x}^{q}\left(\Omega_{x}^{p}\right)$.
3. Application. Let $H_{X}^{p, q}(0 \leqq q<n-1), H_{Y}^{p, q}(0 \leqq q<n-2)$ be the fixed part of $\mathscr{G}_{x}^{q+1}\left(\Omega_{x}^{p}\right), \mathscr{F}_{y}^{q+1}\left(\Omega_{Y}^{p}\right)$ with respect to the action T; further define $H_{X}^{p, n-1}, H_{Y}^{p, n-2}$ as the dual spaces of $H_{X}^{n-p, 0}, H_{Y}^{n-p-1,0}$ respectively. Then, as an application of Theorem 2, we have

Corollary 1. There are canonical direct sum decompositions

$$
\begin{aligned}
& H^{r}(X \backslash x, C)=\sum_{p+q=r} H_{X}^{p, q} \\
& H^{r}(Y \backslash y, C)=\sum_{p+q=r} H_{Y}^{p, q}
\end{aligned}
$$

and natural exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H^{n-1}(X \backslash x, C) \longrightarrow H^{n-1}(X \backslash Y, C) \longrightarrow H^{n-2}(Y \backslash y, C) \longrightarrow 0 \\
& 0 \longrightarrow H^{n}(X \backslash x, C) \longrightarrow H^{n}(X \backslash Y, C) \longrightarrow H^{n-1}(Y \backslash y, C) \longrightarrow 0 .
\end{aligned}
$$

Remark. These direct sum decompositions also arise from the mixed Hodge structures of $X \backslash x, Y \backslash y$ in the sense of [1]. Thus, in this case, the characteristic function explains some aspect of the mixed

Hodge structure. Note also that this corollary shows the degeneracy of the spectral sequence $E_{2}^{p, q}(Y, y)=H^{p}\left(R^{q} \iota_{*} \iota^{*} \Omega_{\dot{Y}}\right)(\iota: Y \backslash y \leftharpoonup Y)$, and of $E_{2}^{p, q}(X, x)$ defined similarly.

Now we shall apply Theorem 1 and Theorem 2 to the study of algebraic manifolds. Let V be an n-dimensional submanifold in $P_{n+r}(C)$ and E the line bundle over V induced by the hyperplane sections. Since E^{-1} is negative, we can consider the quotient space $C(V)=E^{-1} / V$ by shrinking the zero section V into a point p, and we thus have isolated singularity $(C(V), p)$. Now we assume that V is the intersection of r non-singular hypersurfaces of $P_{n+r}(C)$ which are situated in a general position. Then $C(V)$ is a complete intersection, so it satisfies condition (L). (See [3].) Note that, on $C(V)$, there is the natural C^{*} action induced by the multiplication of C in the line bundle E^{-1}. We consider the functions $\chi_{C(V)}^{q}(t)(0 \leqq q \leqq n+2), \chi_{C(V)}(s, t)$ to be defined with respect to this action. Now let $h^{p, q}\left(E^{k}\right)$ be the dimension of $H^{q}\left(V, \Omega^{p}\left(E^{k}\right)\right)$ and let the polynomials $R^{i}\left(z_{1}, z_{2}, \cdots, z_{i}\right) \quad i=1,2, \cdots$ be defined inductively by $R^{1}(z)=(z-1)^{n+r+1}, R^{i+1}\left(z_{1}, z_{2}, \cdots, z_{i+1}\right)=\left(z_{1} R^{i}\left(z_{2}, z_{3}, \cdots, z_{i+1}\right)\right.$ $\left.-z_{2} R^{i}\left(z_{1}, z_{3}, \cdots, z_{i+1}\right)\right) /\left(z_{2}-z_{1}\right)$. Then we have

Corollary 2. The assumptions being as above, $H^{q}\left(V, \Omega^{p}\left(E^{k}\right)\right)=0$ if $p+q \neq n, 0<q<n, k \neq 0$; further, if a_{1}, \cdots, a_{r} are the degrees of the hypersurfaces defining V, then the following congruence holds

$$
\begin{aligned}
\chi_{C(V)}(s, t) \equiv & \chi_{C(V)}^{0}(t)+s \chi_{C(V)}^{1}(t)+\sum_{p=1}^{n-1} s^{n-p+1}\left(-\delta_{p, n-p}+\sum_{k \in Z} h^{p, n-p}\left(E^{k}\right) t^{k}\right) \\
\equiv & \frac{t^{a_{1}}}{t^{a_{1}}-s} R^{r}\left(\frac{t^{a_{1}}-1}{t-1}, \cdots, \frac{t^{a_{r}}-1}{t-1}\right) \\
& +s \sum_{j=1}^{r-1} \frac{\prod_{i=1}^{j}\left(1-t^{a i}\right)}{\prod_{i=1}^{j+1}\left(t^{a_{i}}-s\right)} R^{r-j}\left(\frac{t^{a_{j+1}}-1}{t-1}, \cdots, \frac{t^{a_{r}}-1}{t-1}\right)
\end{aligned}
$$

$\bmod . s^{n+1}$
where the last term should be regarded as a power series in s whose coefficients are rational functions in t. Moreover $\chi_{C(V)}^{1}(t)-\sum_{k<n} h^{n, 0}\left(E^{k}\right) t^{k}$ is a polynomial divisible by t^{n}.

This corollary, combined with Theorems 22.1.1-22.1.2 of Hirzebruch [2], determines all of the dimensions of $H^{q}\left(V, \Omega^{p}\left(E^{k}\right)\right)$.

The details will appear elsewhere.

References

[1] Deligne, P.: Theorie de Hodge. II. Publ. Math. I. H. E. S. No. 40, pp. 5-57 (1971).
[2] Hirzebruch, F.: Topological Methods in Algebraic Geometry. Springer Verlag (1966).
[3] Naruki, I.: A note on isolated singularity. I. Proc. Japan Acad., 51, 317-319 (1975).

