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1. Introduction. For any smooth manifold M, let (M) be the
(infinite dimensional) Lie algebra formed by all the smooth vector fields
on M under the usual bracket operation and Diff (M) the group ormed
by all the diffeomorphisms o M. In [3] (Theorem 1.3.2) H. Omori
proved that if M and N are compact and " yT(M)(N) is a Lie
algebra homomorphism which is continuous in the C-topology, then

induces a local homomorphism Diff (M)-Diff (N) as in the finite
dimensional case. In this theorem the assumption o the continuity
can be omitted, i.e. we can prove the following

Theorem. Any homomorphism " (M)(N) is continuous in
the C-topology.

Since it can be shown that if is non-trivial and N is compact then
M is also compact, we have

Corollary. If N is compact then induces a local homomorphism
Diff (M)-Diff (N).

It is known that if o is an isomorphism, then M and N are diffeo-
morphic, in other words, the Lie algebra (M) determines the manifold
M ([4], or non-compact case [2]). In case of the general homomor-
phism, the relation o M and N is given as ollows. For any positive
integer l, let M be a smooth manifold formed by all the sets of distinct
points o M and put No--{q e N I(X) vanishes at q or any X e )(M)}.
Then N is a finite disjoint unio of subsets No, N, ..., N and i N is
compact then each N is a (topological) fibre bundle over M. This
bundle is closely related to the jet bundle of the tangent bundle o M
=M... M. (It seems that N0= and N is a smooth bundle whose
fibre is a smooth manifold with corner.) The details will appear else-
where.

2. Sketch of the proof of Theorem. Recall that the C-topology of (M) is given by seminorms I. Iv, defined as ollows. Let
U be a relatively compact opea set of M and (x)=(xX,..., x) a coordi-
nate system on some neighborhood of U. Then or any X e (M) with
X=Y, f(x)x, on U, we put

[X],= sup ID"f(x)l
x,[a[_r,i_n
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where 3 and D denote the vector field 3/3x and the differential
operator 31/(3x),... (3x) respectively where lal=a+’" +a or
any multi-index a--(a, ..., a). To prove the continuity of , we shall
express in terms of coordinate systems o M and N. For this purpose
we need the ollowing theorem, essentially due to I. Amemiya [1]. For
any point p o M, put /--{f e C(M)]f(p) --0}.

Theorem 1. Let

_
be a proper subalgebra of (M) with codim _@

=dc. Then we can find a finite number of points p, ..., pt of M
such that

A+I(h /(M)

_
(/ (M)

where h-- 2((d--nl) + d--nl) + 1 and n=dim M. Moreover we have
l<=d/n.

For any q e N--No we have 0codim -//(N)__<codim/(N)
dim N c, hence by Theorem 1,

h+l( 1 ) ( //(M)D_D (M)
u=l =1

holds for some p, ., p of M. Note that the set {p, ., p} is uniquely
determined by (1). We denote by the map which corresponds the
set {p,, ..., p} to the point q of N--No. For each integer l, let N be
the set of points q of N--No such that the number of the correspond-
ing p’s is 1. We can show that if N is compact then N is a fibre
bundle over M with the projection map +. Now, it follows easily
from (1) that if X and Y have the same h-jets at p, ..., p then (X)
=(Y) at q. Therefore if X=, f(x)3 on some neighborhood of p for
each , then the value of (X) at q is given by D f(p)Z for some
vectors Z. By some calculations we can prove the next

Theorem 2. i) There exists an open subset N of IntN for
each such that N is dense in N--No- N.

ii) Let q be a point of N with ,(q)={p, ...,p} and (x)--(x,
..., xD be a coordinate system on some neighborhood U of p for each. Then there exists a coordinate system (x., y)-(x, ., x, y)--(x}, .,
x,...,x, y’,..., y-) on some neighborhood U of q satisfying the
following.

a) +(x,, y)={(x), ..., (x)}.
b) For any X e (M) with X-f(x) on each U we have

D(X)(x., y) . E f:(x)3t +o<,. -f Y:(y)

on U where h-2((d- nl) + d-nl) + 1, n=dim M, d dim N and Y.(y)
=E Y.](y).

c) Y’s satisfy
[Y:, Y,]=0 for ":/:l and [Y:, Y]=flY+--aY:+-.

(Note that these relations are the same as x;3t’s satisfy.)
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Let (v)=(v,..., v) be a coordinate system on some open set V of
N and put o(X)--Y, (X)(v)3 on V. To prove the continuity of o,
we must estimate D(X) for Ifll<:r, which equals, by Theorem 2,,+ Df(x)Z (v) on U V where Z’s are smooth functions
which are not necessarily bounded on U ,V. We use the following
lemma to eliminate Z.

Lemma. Let " C(R)oC(R)[Z:] (--the polynomial ring with
C(R) coecient) be a map given by

(f(x))= Df(x,)Z:.

Then we have

(f(x))=f(xO(1) + 3,...3f(x(k))dt(k)
k=l Jl ,,j=l

X (-- 1) x{;. m(m+,+’"+)

where
x(k)=(1--t)x, + (1--ta)tx +... + (1--t)t_... tx+ tt_,. tx+,,
dr(k) t-t- t dt dt
Applying this lemma to (f(x))== r+Drf(x)Z(v) for

each i n, we obtain

on U V for some constant C where W is a suitable open set of M, a
=[d/n]=the integer part of din and b=2a((d--n)a+d-n+ 1)--1. Us-
ing this inequality we can prove the continuity of .

References

1 I. Amemiya: Lie algebra of vector fields and complex structure (to appear).
2 I. Amemiya, K. Masuda, and K. Shiga: Lie algebra of differential operators

(to appear in Osaka J. Math.).
3 H. Omori: Infinite Dimensional Lie Transformation Groups. Lecture Notes

in Math., 4’27, Springer-Verlag Berlin (1974).
4] L.E. Pursell and M. E. Shanks: The Lie albegra of a smooth manifold.

Proc. Amer. Math. Soc., 8, 468-472 (1954).


