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116. On Extensions of my Previous Paper
“On the Korteweg-de Vries Equation”

By Masayoshi TSUTSUMI
Department of Applied Physics, Waseda University

(Comm. by Kinjird KUNUGI, M. J. A., Sept. 12, 1975)

1. Introduction. Previously, in [1] we have proved the following
result: Let {p,(x; O)} and {2,0)}, 7=1,2,.--, be a complete system
of mormalized eigenfunctions and eigenvalues, respectively, of the
Schrodinger eigenvalue problem in T', T' being o torus, with t con-
sidered as a parameter:

2
{%@(w ; O+ ul@, Doy)(x; B)=—2,(0¢;(x; 1),
¢+, ) e CX(TY,  for Vi e (— oo, o0),
where w(x, t) is a real function belonging to C*(T* X RY). Then we have
the asymptotic expansion :
1.2) i} e~ Mg (x, t))z~f] §UVEP (u, 0u/ou, « - -, 054Dy /92 -D)
J=1

1=0

1.1

where P; are uniquely determined and can be calculated explicitly in
terms of the function u and its partial derivatives in x, of order
<2(i—1). If u=wu(x,t) evolves according to the equation

au _ M (t) a P( aZ(i—l) /a 2(1_1))
1.3) —a't__éfi £ iUy >y u/ox ,

u(z, t) e C*(T* X RY),
where M is an arbitrary fixed positive integer and fi(t) are arbitrary
smooth function of t, then the eigenvalues 2,(t) of the associated eigen-
value problem (1.1) are constants in t and every P;( - ) appeared in
(1.2) is the conserved density of (1.3).

In this note, two extensions of the above result are considered.
One is to extend it into # X » matrix form. The other is to extend it
into the case of many space variables.

2. nXn matrix form. Let U(z,t) be a nxXn Hermitian matrix
function whose elements belong to C~(T'x R'). Below, we denote the
set of such matrix functions by C=(T'xR"). Consider the eigenvalue
problem for the following matrix differential equation with ¢ considered
as a parameter:

d2
@1 W@+U(m, 0= —20, —oo <&, t< + oo,
(- ;) e C(TH for all £ € (— o0, o).
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There exists a complete system of normalized eigen-matrices {@;(x; 1)}
and eigenvalues {1,(¢)}, 7=1,2, - - -, counted according to their multi-
plicity. Let G(z, vy, s; t) be the Green matrix of the following problem
of parabolic type:

9 6=_% G+U@, G,
08 o0x?

2.2) 1im Gz, Y, s; t)y=0(x—yI, I being the identity matrix,
S\O
G(-,y,8;t)e C=(TY, for all ¥, t € (— oo, o) and all s>0.
We have
2.3) G, Y, 55 =3, e=D0 (, YKy ; B),
i=1

where the asterisk indicates the conjugate transpose.
Theorem 1. The eigenvalues of (2.1) are constants as t varies if
and only if the matriz function U(x, t) satisfies

f trace (_;’t_U(x, DGz, 7, 8; t))dx:O,
0

for all >0 and all £t € (— oo, o).
Theorem 2. As s\0, we have the following asymptotic ex-
pansion :
(2.5) G, @, 85 )~ si2Py(x, B),
i=0

where P,(x,1t) are nXn matrices whose elements can be computed ezx-
plicitly in terms of the elements of U,oU/ox, - - - and *~ VU [ox*¢D,
Theorem 3. We have

Il trace (iPi(x, t)-G(x, x, s; t))dx=0
0 o

for all ¢t € (— oo, o) and all s>0.
Combining Theorem 1 with Theorem 3, we obtain
Theorem 4. If u(x,t) evolves according to the equation

D y=s 1m0 e DT g2limD

Uz, t) € C=(T* X RY),
then, all eigenvalues of (2.1) are constant in t. Furthermore, the
quantities

2.8) IltracePi(U,---,az“"l)U/axZ““”)dx, i=0,1,2, - -,
0

are invariant integrals of the equation (2.7).
Example. In an analogous way as that in [1], we have

0 0 0 0 i
2.9 —U+12/ 7 —P,=—U+3——(U»+—-U=0,
2.9 U T2V m P + ax(U)+ o

ot

which is a matrix analogue of the Korteweg-de Vries equation. We
consider the case when U is a 2 X2 real symmetric matrix:

2.9

(2.6)

2.7
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U=<g’ g), where a, b and ¢ are real functions. Then, the equa-
tion (2.9) is reduced to the system

2.10 K 3__ a? —0,
2.10) a ; o+ (

(2.10) —a—t—b+3 a O pryey+ -———b 0,
2.10” —0.
( ) at

If we choose

a=b=—u* and c=—a—u,
ox

where u is a real function, the equations (2 10) and (2.10") yield

@.11) u(-2u— 602 7 u)=0
at ox
and the equation (2.10”) is
2.12) —a—<—a—u-— 6u2—6—u+ iu) =0.
ox \ at ox ox®

Thus we have

Theorem 5. If u(x,t) varies according to the modified Korteweg-
de Vries equation:

2.13) Dy 0 a =0,
ot ox

with

2.14) w(@, t) € C=(T" X RY),

then the eigenvalues of the problem:
iq)_‘_(—uz 6u/ax)@=_l@,
(2.15) dx? ou/ox —ul
e CY(TH
are constants in t.

3. Many space variable case. Let u(x,t) be an infinitely differ-
entiable real function defined on 7" X R', where T denotes the n-torus.
Let {p,(x; ©)} and {2,(D)}, =1,2, - - - be a complete system of normalized
eigenfunctions and eigenvalues, respectively, of the Schrodinger eigen-
value problem in T™ with ¢ considered as a parameter:

3.1) {Asoj(x s O+ u@, Doy ; )=—2,0¢,(2; 1),
o,(+, 1) e CX(T™) for Yt e (— o0, o).

Let G(z, 9, s; t) be the Green function of the following problem of

parabolic type:

0 G=4G+u(z, )G,
0s

(3.2) li{n G, y,s; t)=dx—y),
SN0
G(-,y,8;t) e CX(T™) for Yy e R™, ¥¢>0 and Vi € (— o0, o).
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Then, we have

G(x’ Y,8; t)=j§1 e_xj(t)sgoj(x9 t)SDJ(?/, t)-

Theorem 1. The eigenvalues A,(t) of (3.1) are constants in t if
and only if u(x,t) satisfies

1 1
0 _
3.3) L- : -L 2wt 6@, 3,5, Hdw=0.

Theorem 2. As s\ 0, we have the asymptotic expansion:
(3.4) G, 2,8, )~ s Py, t)
1=0

where P; can be calculated in terms of # and their partial derivatives
with respect to z, of order <2(i—1).
Theorem 3. We have

(3.5) L : j: G®) PP, )G, @, s, Hdw=0,  i=1,2, .-,

where b(t)=(b,(t), - - -, b, () is an arbitrary real vector function and
V=(a/ax1’ tt a/axn)-
Theorem 4. If u(x,t) evolves according to the equation

(3.6) %u: f} F.OB® TP,  ueC=(T"XRY),

where M is an arbitrary positive number and f,(t) are arbitrary smooth
functions, then the eigenvalues of (3.1) are constants as t varies.
Furtheremore, every P, appeared in (3.4) is the conserved density of
(3.6).

Example. We obtain

%‘_ +124/ 7 b(t) - PP,
ou | & ou ou
=23 bk(t)(ﬁu so A )_0.
Theorem 5. If u(x,t) evolves according to the equation (3.7) with
u(x, t) € C=(T" X RY), then all eigenvalues of (3.1) are independent of t.
Furthermore, all P; are conserved densities of (3.7).
Detailed proofs and further investigations will appear elsewhere.
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