155. On the Fundamental Solution of a Degenerate Parabolic System

By Kenzo Shinkai
University of Osaka Prefecture
(Comm. by Kôsaku Yosida, m. J. A., Oct. 13, 1975)

Introduction. In the recent paper [2], the author has shown that the method used in C. Tsutsumi [3] to construct the pseudo-differential symbol of the fundamental solution for a degenerate parabolic pseudodifferential operator is applicable to some parabolic systems. The purpose of the present paper is to show that the above method is also applicable to a parabolic system which degenerates at $t=0$. As an application we construct in $\S 2$ the pseudo-differential symbol of the fundamental solution of a degenerate parabolic operator of higher order which includes the operator treated by M. Miyake [1]. In the following the notation of [2] will be freely used.

1. The fundamental solution of a degenerate system. Let us consider the Cauchy problem for a system of pseudo-differential equations

$$
\begin{equation*}
\partial_{t} u(t, x)+p\left(t ; X, D_{x}\right) u(t, x)=0, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{s>0} u(t, u)=u_{0}(x), \tag{2}
\end{equation*}
$$

where $p(t ; x, \xi) \in \mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m}\right), 0 \leq \delta<\rho \leq 1$. We denote by $z(t, s ; x, \xi)$ an $M \times M$ matrix of symbols which satisfies $\partial_{t} z(t, s ; x, \xi)+p(t ; x, \xi) z(t, s ; x, \xi)=0$, $z(s, s ; x, \xi)=I$, where I denotes the identity matrix. We denote by $|p|$ the norm of an $M \times M$ matrix p, i.e., $p=\sup \left\{|p y| /|y| ; 0 \neq y \in C^{M}\right\}$.

Definition. We say that a system of pseudo-differential operators $\partial_{t}+p\left(t ; X, D_{x}\right)$ satisfies the property (F), when there exists a non-negative continuous function $\lambda(t ; x, \xi)$ and following two conditions are satisfied:
i) For any α, β there exists a constant $C_{\alpha, \beta}$ such that

$$
\left.\begin{array}{rl}
\int_{s}^{t}\left|p_{(\beta)}^{(\alpha)}(\sigma ; x, \xi)\right| d \sigma \leq C_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|}\{ & \int_{s}^{t} \lambda(\sigma ; x, \xi) d \sigma+1 \tag{3}
\end{array}\right\}
$$

ii) There exist constants $d>0$ and $C>0$ such that

$$
\begin{equation*}
|z(t, s ; x, \xi)| \leq C \exp \left[-d \int_{s}^{t} \lambda(\sigma ; x, \xi) d \sigma\right] \quad \text { for } 0 \leq s \leq t \leq T \tag{4}
\end{equation*}
$$

When a system $\partial_{t}+p\left(t ; X, D_{x}\right)$ is parabolic in the sense of Petrowskii, it satisfies the property (F) with $\lambda(t ; x, \xi)=\langle\xi\rangle^{m}$ in any finite layer $[0, T] \times R_{x, \xi}^{2 n}$. But in the case of degenerate $p(t ; x, \xi)$, we must choose a degenerate $\lambda(t ; x, \xi)$. Here we give a class of systems for which the property (F) is easily verified.

Lemma 1. Let $p(t ; x, \xi)=f(t) \tilde{p}(t ; x, \xi)$ where $f(t)$ is a non-negative continuous function and $\tilde{p}(t ; x, \xi) \in \mathcal{E}_{t}^{0}\left(S_{\rho, 0}^{m}\right)$ is a matrix of which the real part of every eigenvalue is not less than $d\langle\xi\rangle^{m}$. Then $\partial_{t}+p\left(t ; X, D_{x}\right)$ fulfills the property (F) with $\lambda(t ; x, \xi)=f(t)\langle\xi\rangle^{m}$.

The property (F) is stable in the following sense:
Lemma 2. Let $\partial_{t}+p\left(t ; X, D_{x}\right)$ satisfy the property (F), and let $q(t ; x, \xi) \in \mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m}\right)$. If there exist constants C_{1} and C_{2} such that $0<C_{1}$ $<d / C$ and

$$
\begin{equation*}
\int_{s}^{t}|q(\sigma ; x, \xi)| d \sigma \leq C_{1} \int_{s}^{t} \lambda(\sigma ; x, \xi) d \sigma+C_{2}, \tag{5}
\end{equation*}
$$

then $\partial_{t}+p\left(t ; X, D_{x}\right)+q\left(t ; X, D_{x}\right)$ also satisfies the property (F).
Theorem 1. Let $\partial_{t}+p\left(t ; X, D_{x}\right)$ satisfy the property (F). Then there exists the symbol of fundamental matrix $e(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{0}\right)$ for the Cauchy problem (1), (2), i.e., e(t, $s ; x, \xi)$ satisfies

$$
\begin{gather*}
\partial_{t} e(t, s ; x, \xi)+p(t) \circ e(t, s)(x, \xi)=0 \tag{6}\\
w-\lim _{t \downarrow s} e(t, s ; x, \xi)=I \tag{7}
\end{gather*}
$$

The proof of the theorem is the same with that of Theorem 1 and Theorem 2 in [2].
2. The fundamental solution of a degenerate parabolic operator of higher order. Let

$$
\begin{equation*}
L=\partial_{t}^{M}+a_{1}\left(t ; X, D_{x}\right) \partial_{t}^{M-1}+\cdots+a_{M}\left(t ; X, D_{x}\right), \tag{8}
\end{equation*}
$$

where
(9) $\quad a_{j}(t ; x, \xi)=\sum_{k=0}^{j} a_{j, k}(t ; x, \xi) t^{j l-k}, \quad j=1,2, \cdots, M$.

Then we have the following
Theorem 2. Let L satisfy the following conditions:
i) $a_{j, k}(t ; x, \xi) \in \mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m(j, k)}\right)$ where

$$
\begin{equation*}
m(j, k)=j m-k m /(l+1) . \tag{10}
\end{equation*}
$$

ii) For a positive constant d, every root $\tau_{j}(t ; x, \xi)$ of the equation

$$
\tau^{M}+a_{1,0}(t ; x, \xi) \tau^{M-1}+\cdots+a_{M, 0}(t ; x, \xi)=0
$$

satisfies
(11)

$$
\operatorname{Re} \tau_{j}(t ; x, \xi) \leq-d\langle\xi\rangle^{m}, \quad j=1,2, \cdots, M
$$

Then there exist pseudo-differential symbols $g_{j}(t, s ; x, \xi) \in w$ $\mathcal{E}_{t, s}^{0}\left(S_{\rho \delta}^{-j m /(l+1)}\right), j=0,1, \cdots, M-1$, such that for $\psi_{j}(x) \in \mathscr{B}, j=0,1$, $\cdots, M-1$, the function

$$
\begin{equation*}
v(t, x)=O s-\left[e^{-i y \xi} g_{j}(t, 0 ; x, \xi) \psi_{j}(x+y)\right] \tag{12}
\end{equation*}
$$

is a solution of the following Cauchy problem

$$
\begin{equation*}
L v=0, \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{t}^{j} v(0, x)=\psi_{j}(x), \quad j=0,1, \cdots, M-1 \tag{14}
\end{equation*}
$$

Proof. Set
(15)

$$
h(t ; \xi)=t^{l}\langle\xi\rangle^{m}+\langle\xi\rangle^{m /(l+1)},
$$

and let

$$
\begin{align*}
& p(t ; x, \xi)=t^{l}\langle\xi\rangle^{m}\left[\begin{array}{c}
0 \\
,-1, \\
a_{m, 0}\langle\xi\rangle^{-M m}, \cdots, a_{2,0}\langle\xi\rangle^{-2 m}, a_{1,0}\langle\xi\rangle^{-m}
\end{array}\right], \tag{16}\\
& q(t ; x, \xi)=\left[\begin{array}{ll}
0,-\langle\xi\rangle^{m /(l+1)}, & \\
& 0,-\langle\xi\rangle^{m /(l+1)} \\
q_{M}, q_{M-1} & , \cdots, q_{2}, q_{1}
\end{array}\right], \tag{17}
\end{align*}
$$

where $q_{j}(t ; x, \xi), j=1,2, \cdots, M$, are decided so that if

$$
\left\{\begin{array}{l}
{\left[\partial_{t}+p\left(t ; X, D_{x}\right)+q\left(t ; X, D_{x}\right)\right] u(t, x)=0,} \tag{18}\\
u_{1}(t, x)=h\left(t ; D_{x}\right)^{M-1} v(t, x)
\end{array}\right.
$$

then v satisfies $L v=0$. Then we can prove that $\partial_{t}+p\left(t ; X, D_{x}\right)$ $+q\left(t ; X, D_{x}\right)$ satisfies the property (F), and we have the fundamental matrix $e(t, s ; x, \xi)$ of the operator $\partial_{t}+p\left(t ; X, D_{x}\right)+q\left(t ; X, D_{x}\right)$. Let $b_{j, k}(t ; \xi)$ be the symbols which are decided by

$$
\left\{\begin{align*}
b_{1,1}(t ; \xi)=h(t ; \xi)^{M-1} \tag{19}\\
b_{j, k}(t ; \xi)=h(t ; \xi)^{-1}\left\{b_{j-1, k-1}(t ; \xi)+\partial_{t} b_{j-1, k}(t ; \xi)\right\}, \\
\quad j=2, \cdots, M ; k=1, \cdots M, \\
b_{j, k}(t ; \xi)=0 \quad \text { when } j<k \text { or } k=0 .
\end{align*}\right.
$$

Then $g_{0}, g_{1}, \cdots, g_{M-1}$ are given by the equations:

$$
\begin{equation*}
g_{j}(t, s ; x, \xi)=\sum_{k=1}^{M} h(t)^{1-M} \circ e_{1, k}(t, s) \circ b_{k, j+1}(s)(x, \xi) . \tag{20}
\end{equation*}
$$

References

[1] Miyake, M.: Hypoelliptic degenerate evolution equations of the second order (to appear).
[2] Shinkai, K.: On symbols of fundamental solutions of parabolic systems. Proc. Japan Acad., 50, 337-341 (1974).
[3] Tsutsumi, C.: The fundamental solution for a degenerate parabolic pseudodifferential operator. Proc. Japan Acad., 50, 11-15 (1974).

