168. The Isometry Groups of Compact Manifolds with Non-positive Curvature*)

By Masao Maeda
Department of Mathematics, Tokyo Institute of Technology
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 13, 1975)

Let M be an n-dimensional compact connected Riemannian manifold with negative Ricci curvature. Then a classical theorem of Bochner says that there exist no non-trivial Killing vector fields on M. And hence the order of the isometry group $I(M)$ of M is finite. Relating to this theorem, T. Frankel obtained the following:

Let M be a compact Riemannian manifold with non-positive sectional curvature $K_{\sigma} \leqq 0$ and with negative Ricci curvature. If $f: M \rightarrow M$ is an isometry which is continuously homotopic to the identity map, then f is the identity, see [1]. This result was extended by H.B. Lawson and S. T. Yau in a more general situation. That is

Theorem ([5; Theorem 4, p. 225]). Let M be a compact Riemannian manifold with non-positive sectional curvature and Ricci curvature negative at some point of M. If $f: M \rightarrow M$ is an isometry continuously homotopic to the identity, then f is the identity.

As a corollary of this theorem, we easily have
Lemma 1. Let M be a manifold as in the theorem of Lawson and Yau. If $f: M \rightarrow M$ is an isometry such that $d(p, f(p))<d(p, C(p))$ for all point $p \in M$, then f is the identity.

Here d is the distance function of M induced from the Riemannian metric and $C(p)$ the cut locus of p in M.

Now, for such manifolds as in the theorem of Bochner or Lawson and Yau, it is natural to ask whether we can estimate the order of the isometry group $I(M)$ by using the geometrical terms of M, for example, the diameter, the injectivity radius, the sectional curvature and so on. To this problem, H. C. Im Hof gave an estimation of order of $I(M)$ for a manifold with the sectional curvature K_{σ} satisfying $-b^{2} \leqq K_{\sigma} \leqq-a^{2}<0$, $0<a \leqq b$. In his argument, the assumption that M is of negative curvature is essential.

In this note, we will give an estimation of the order of $I(M)$ for manifolds as in the theorem of Lawson and Yau in a different way from the one in H. C. Im Hof's theorem. The author thanks Prof. T. Otsuki for his kind advices.

Let M be a compact Riemannian manifold. For a point $p \in M$,

[^0]$T_{p}(M)$ denotes the tangent space of M at p and $\exp _{p}: T_{p}(M) \rightarrow M$ the exponential mapping. Every geodesic is parametrized with respect to the arc-length. Put $\delta:=\min \{d(p, C(p)): p \in M\} . \quad \delta$ is called the injectivity radius of M. For a positive number r and a point $p \in M, B_{r}(p)$ denotes the open metric ball in M with radius r centerd at p. By the compactness of M, we can choose a finite number of points $p_{1}, \cdots, p_{k} \in M$ such that
(*)
$$
\bigcup_{i=1}^{k} B_{0 / 4}\left(p_{i}\right)=M .
$$

Of course k depend on δ and other geometrical structure of M. In this situation, we have

Proposition 1. Let M be a compact Riemannian manifold with non-positive sectional curvature and Ricci curvature negative at some point of M. Then

$$
\text { the order of } I(M) \leqq k^{k}
$$

Proof. We define a mapping $\Phi: I(M) \rightarrow\left\{\right.$ all the k-sequences $\left(i_{1}, i_{2}\right.$, $\left.\left.\cdots, i_{k}\right), 1 \leqq i_{1}, i_{2}, \cdots, i_{k} \leqq k\right\}$ as follows: for $f \in I(M)$

$$
\Phi(f)=\left(j_{1}, j_{2}, \cdots, j_{k}\right)
$$

where for each $i=1, \cdots, k$, the number j_{i} is the smallest of j such that $f\left(p_{i}\right) \in B_{0 / 4}\left(p_{j}\right)$. Φ is well defined, because by means of (*). We will show that Φ is injective. Assume $\Phi(f)=\Phi(g)=\left(j_{1}, j_{2}, \cdots, j_{k}\right)$ for f, g $\in I(M)$. Then we have

$$
d\left(f\left(p_{i}\right), p_{j_{i}}\right)<\frac{\delta}{4} \quad \text { and } \quad d\left(g\left(p_{i}\right), p_{j_{i}}\right)<\frac{\delta}{4}, \quad i=1, \cdots, k .
$$

Hence, putting $h:=f^{-1} \circ g$, for each $i=1, \cdots, k$, we have

$$
\begin{aligned}
d\left(p_{i}, h\left(p_{i}\right)\right) & =d\left(p_{i}, f^{-1} \circ g\left(p_{i}\right)\right)=d\left(f\left(p_{i}\right), g\left(p_{i}\right)\right) \\
& \leqq d\left(f\left(p_{i}\right), p_{j_{i}}\right)+d\left(p_{j_{i}}, g\left(p_{i}\right)\right)<\frac{\delta}{2}
\end{aligned}
$$

Now for each point $p \in M$, we can find a number i_{0} such that $p \in B_{\delta / 4}\left(p_{i_{0}}\right)$ by (*). So, from the above fact, we have

$$
\begin{aligned}
d(p, h(p)) & \leqq d\left(p, p_{i_{0}}\right)+d\left(p_{i_{0}}, h\left(p_{i_{0}}\right)\right)+d\left(h\left(p_{i_{0}}\right), h(p)\right) \\
& <\frac{\delta}{4}+\frac{\delta}{2}+d\left(p_{i_{0}}, p\right)<\frac{\delta}{4}+\frac{\delta}{2}+\frac{\delta}{4}=\delta
\end{aligned}
$$

Thus for each point $p \in M, d(p, h(p))<\delta \leqq d(p, C(p))$. Then by Lemma $1, h$ must be identity. So our assertion is proved. q.e.d.

Next, we will calculate the number k for compact manifolds with the sectional curvature satisfying $-b^{2} \leqq K_{o} \leqq 0$ for some $b>0$.

Let H be the n-dimensional hyperbolic space of constant curvature $-b^{2}$ represented on the Euclidean disk $\left\{x \in R^{n}:\|x\|^{2}<1 / b^{2}\right\}$ with the Riemannian metric $d s^{2}=\frac{4}{\left(1-b^{2}\|x\|^{2}\right)^{2}} \sum_{i=1}^{n} d x_{i}^{2}$. For a positive number t, [t] denotes the integer part of t. Let $r, s, r>s$ be any positive numbers.

Lemma 2. For the point $\bar{p}=(0, \cdots, 0) \in H$, there exists a finite number of points $\bar{p}_{1}, \cdots, \bar{p}_{l} \in B_{r}(\bar{p})$ such that

$$
\bigcup_{i=1}^{l} B_{s}\left(\bar{p}_{i}\right) \supset \overline{B_{r}(\bar{p})} .
$$

The number l can be taken as

$$
l \leqq\left(\left[\frac{r}{s}\right]+1\right)\left(\left[\frac{2 R}{\alpha}\right]+1\right)^{n}+1
$$

where R and α are detemined with β and a as follows:

$$
\left\{\begin{array}{l}
\cosh b \beta=\cosh b s / \cosh \frac{b s}{2}, \quad a=\tanh \frac{b r}{2} / b, \tag{**}\\
R=2 a /\left(1-a^{2} b^{2}\right), \quad \alpha=\left\{\frac{2 R^{2}}{n}\left(1-\cos \frac{\beta}{R}\right)\right\}^{1 / 2}
\end{array}\right.
$$

Proof. Let $\gamma:[0, \infty) \rightarrow H$ be a geodesic starting from \bar{p}. Consider a covering of $\gamma([0, r])$:

$$
\int_{j=0}^{[r / s]+1} B_{s}(\gamma(j \cdot s)) \supset \gamma([0, r]) .
$$

Let β be the number satisfying ($* *$). Then, by using the hyperbolic trigonometry, we can see that β-tubular neighborhood

$$
U_{\beta}(\gamma([0, r])):=\{\bar{q} \in H: d(\bar{q}, \gamma([0, r]))<\beta\}
$$

of γ is contained in $\bigcup_{j} B_{s}(\gamma(j \cdot s))$. And we have

$$
U_{\beta}(\gamma([0, r])) \cap \partial B_{r}(\bar{p}) \supset B_{\beta^{\prime}}^{n-1}(\gamma(r)) \supset B_{\beta}^{n-1}(\gamma(r))
$$

for some $\beta^{\prime}>\beta$, where $B_{\beta^{\prime}}^{n-1}(\gamma(r))$ denotes the open metric ball in $\partial B_{r}(\bar{p})$ with radius β^{\prime} centered at $\gamma(r)$. Note that $\partial B_{r}(\bar{p})$ is isometric to the standard ($n-1$)-dimensional sphere $S^{n-1}(R)$. For any point $\bar{q} \in B_{\beta}^{n-1}(\gamma(r)$) and the geodesic $\eta:[0, r] \rightarrow H$ connecting from $\gamma(0)$ to \bar{q}, we easily see that $\eta([0, r]) \subset U_{\beta}(\gamma([0, r]))$. Thus, if we can find a finite number of points $\bar{p}_{0}, \cdots, \bar{p}_{m} \in S^{n-1}(R)$ such that

$$
\bigcup_{i=1}^{m} B_{\beta^{\prime}}^{n-1}\left(\bar{p}_{i}\right) \supset S^{n-1}(R),
$$

then, from the above fact, we have

$$
\overline{B_{r}(\bar{p})} \subset \bigcup_{i=1}^{m} U_{\beta}\left(\gamma_{i}([0, r])\right) \subset \bigcup_{i=1}^{m} \bigcup_{j=0}^{[r / s]+1} B_{s}\left(\gamma_{i}(j \cdot s)\right),
$$

where $\gamma_{i}:[0, r] \rightarrow H$ is the geodesic from \bar{p} to $\bar{p}_{i}, i=1, \cdots, m$.
Now, for any point $p=\left(p_{1}, \cdots, p_{n}\right) \in R^{n}$ and a positive number $\rho>0$, we set

$$
I(p, \rho):=\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in R^{n}: 0<\left|x_{i}-p_{i}\right|<\rho / 2,1 \leqq i \leqq n\right\} .
$$

Then we can easily see

$$
\begin{aligned}
& \sup \left\{d\left(q, q^{\prime}\right): q, q^{\prime} \in I(p, \rho) \cap S^{n-1}(R)\right\} \\
& \quad \leqq R \arccos \frac{2 R^{2}-n \rho^{2}}{2 R^{2}} \quad \text { if } n \rho^{2} \leqq 2 R^{2}
\end{aligned}
$$

where d is the distance function on $S^{n-1}(R)$. We choose $\alpha>0$ such that

$$
R \arccos \frac{2 R^{2}-n \alpha^{2}}{2 R^{2}}=\beta
$$

i.e. $\alpha=\left\{\frac{2 R^{2}}{n}\left(1-\cos \frac{\beta}{R}\right)\right\}^{1 / 2}$.

Thus, if we can find a finite number of points $q_{1}, \cdots, q_{m} \in R^{n}$ such that

$$
\bigcup_{i=1}^{m} \overline{I\left(q_{i}, \alpha\right)} \supset S^{n-1}(R) \quad \text { and } \quad \overline{I\left(q_{i}, \alpha\right)} \cap S^{n-1}(R) \neq \emptyset, i=1,2, \cdots, m
$$

and taking a point $\bar{p}_{i} \in \overline{\overline{\left(q_{i}, \alpha\right)}} \cap S^{n-1}(R)$ for each i, then, from the above fact, we have

$$
S^{n-1}(R)=\bigcup_{i=1}^{m} \overline{I\left(q_{i}, \alpha\right)} \cap S^{n-1}(R) \subset \bigcup_{i=1}^{m} \overline{B_{\beta}^{n-1}\left(\bar{p}_{i}\right)} \subset \bigcup_{i=1}^{m} B_{\beta^{\prime}}^{n-1}\left(\bar{p}_{i}\right)
$$

Hence, by means of an Euclidean geometric consideration, we can choose an m with the above mentioned property such that

$$
m \leqq \begin{cases}\left(\left[\frac{2 R}{\alpha}\right]+1\right)^{n} & \text { if }\left[\frac{2 R}{\alpha}\right] \neq \frac{2 R}{\alpha} \\ {\left[\frac{2 R}{\alpha}\right]^{n}} & \text { if }\left[\frac{2 R}{\alpha}\right]=\frac{2 R}{\alpha} .\end{cases}
$$

Remark. The estimation of the number m in the proof of Lemma 2 is very rough. We counted the number of points $q_{i} \in R^{n}$ such that
 ample, we can choose an upper bound of m as

$$
m \leqq \begin{cases}\left\{2\left(\left[\frac{R}{\alpha}\right]+1\right)\right\}^{n}-\left\{2\left[\frac{R}{\sqrt{n} \alpha}\right]\right\}^{n} & \text { if }\left[\frac{R}{\alpha}\right] \neq \frac{R}{\alpha} \\ \left(2\left[\frac{R}{\alpha}\right]\right)^{n}-\left(2\left[\frac{R}{\sqrt{n} \alpha}\right]\right)^{n} & \text { if }\left[\frac{R}{\alpha}\right]=\frac{R}{\alpha}\end{cases}
$$

And it will be possible to get a more sharp estimation.
Using this Lemma, we have
Proposition 2. Let M be an n-dimensional compact Riemannian manifold with the diameter d and the injectivity radius δ, whose sectional curvature K_{σ} satisfies $-b^{2} \leqq K_{\sigma} \leqq 0$ for some $b>0$. Then there exists a finite number of points $p_{1}, \cdots, p_{k} \in M$ such that

$$
\bigcup_{i=1}^{k} B_{\delta / 4}\left(p_{i}\right)=M \quad \text { with } \quad k \leqq\left(\left[\frac{4 d}{\delta}\right]+1\right)\left(\left[\frac{2 R}{\alpha}\right]+1\right)^{n}+1
$$

where R and α are determined as in Lemma 2 by replacing r and s with d and $\delta / 4$ respectively.

Proof. Let $\pi: \tilde{M} \rightarrow M$ be the universal covering of M and π its projection. Then as is well known, \tilde{M} is diffeomorphic to an n-dimensional Euclidean space and each geodesic segment of M is the shortest connection between its end points. Fix a point $p \in M$ and $\tilde{p} \in\left\{\pi^{-1}(p)\right\}$. Clearly $B_{a}(\tilde{p})$ contains a fundamental domain D of this covering i.e. $\pi: D \rightarrow M$ is one-to-one and $\pi: \bar{D} \rightarrow M$ is onto. Since δ is the injectivity radius of M, for each point $\tilde{q} \in \tilde{M}, \pi: B_{\delta / 4}(\tilde{q}) \rightarrow B_{\delta / 4}(\pi(\tilde{q}))$ is onto and isometric. So, if we can find a finite number of points $\tilde{p}_{1}, \cdots, \tilde{p}_{k} \in B_{d}(\tilde{p})$ satisfying $\bigcup_{i=1}^{k} B_{\delta / 4}\left(\tilde{p}_{i}\right) \supset \overline{B_{a}(\tilde{p})}$, then we have $\bigcup_{i=1}^{k} B_{\delta / 4}\left(\pi\left(\tilde{p}_{i}\right)\right)=M$. Let H and
$\bar{p} \in H$ be the space and the point as in Lemma 2. Let $l: T_{p}(H) \rightarrow T_{p}(\tilde{M})$ be an isometry. And consider a mapping

$$
\varphi:=\exp _{\tilde{p}} \cdot l \cdot \exp _{p}^{-1}: H \rightarrow \tilde{M}
$$

For any point $\bar{q} \in B_{a}(\bar{p})$, let $\gamma:[0, \delta / 4] \rightarrow H$ be a geodesic starting from \bar{q}. Then, by Rauch's Comparison Theorem (see [2: Korollar p. 179]), $L(\gamma) \geqq L(\varphi(\gamma))$
where L denotes the length of a curve. So $\varphi\left(B_{\delta / 4}(\bar{q})\right) \subset B_{\delta / 4}(\varphi(\bar{q}))$ for any $\bar{q} \in B_{d}(\bar{p})$. Thus, if we find a finite number of points $\bar{p}_{1}, \cdots, \bar{p}_{k} \in H$ such that $\bigcup_{i=1}^{k} B_{\partial / 4}\left(\bar{p}_{i}\right) \supset \overline{B_{d}(\bar{p})}$, then, from the above facts, we have

$$
\left.\overline{B_{a}(\tilde{p})}=\overline{\varphi\left(B_{a}(\bar{p})\right.}\right) \subset \bigcup_{i=1}^{k} \varphi\left(B_{\delta / 4}\left(\bar{p}_{i}\right)\right) \subset \bigcup_{i=1}^{k} B_{\delta / 4}\left(\varphi\left(\bar{p}_{i}\right)\right)
$$

And the existence of such points \bar{p}_{i} is already shown in Lemma 2.
q.e.d.

Summerising the above,
Theorem. Let M be an n-dimensional compact connected Riemannian manifold with non-positive sectional curvature $K_{\sigma} ;-b^{2}$ $\leqq K_{\sigma} \leqq 0$ for some $b>0$ and with Ricci curvature negative at some point. Let d and δ be the diameter and the injectivity radius of M respectively. Then

$$
\text { the order of } I(M) \leqq k^{k} \text {, }
$$

where k is given by $k=\left(\left[\frac{4 d}{\delta}\right]+1\right)\left(\left[\frac{2 R}{\alpha}\right]+1\right)^{n}+1$ and R, α are determined with β, α as follows:

$$
\begin{gathered}
\cosh b \beta=\cosh \frac{b \delta}{4} / \cosh \frac{b \delta}{8}, \quad a=\tanh \frac{b d}{2} / b \\
R=2 a /\left(1-a^{2} b^{2}\right), \quad \alpha=\left\{\frac{2 R^{2}}{n}\left(1-\cos \frac{\beta}{R}\right)\right\}^{1 / 2}
\end{gathered}
$$

References

[1] T. Frankel: On Theorems of Hurewitz and Bochner. J. Math. Mech., 15, 373-377 (1966).
[2] D. Gromoll, W. Klingenberg, and W. Meyer: Riemannsche Geometrie im Grossen. Springer-Verlag (1968).
[3] H. C. Im Hof: Ü̉ber die Isometriegruppe einer kompacten Mannigfaltigkeiten negative Krummung. Comm. Math. Helv., 48, 14-30 (1973).
[4] H. Huber: Über die Isometriegruppe einer kompakten Mannigfaltigkeit mit negativer Krummung. Helv. Phys. Acta, 45, 277-288 (1972).
[5] H. B. Lawson and S. T. Yau: Compact manifolds of nonpositive curvature. J. Diff. Geom., 7, 211-228 (1972).

[^0]: *) Dedicated to Prof. S. Kashiwabara on his 60th birthday.

