6. On Polythetic Groups

By Reri TAKAMATSU Department of Mathematics, Sophia University (Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1976)

§ 1. Let G be a locally compact abelian (LCA) group and Z be the additive group of integers. We say G is polythetic if it has a dense subgroup which is a homomorphic image of Z^n . In other words G is to contain n elements x_1, \dots, x_n such that the subgroup

 ${m_1x_1 + \cdots + m_nx_n; (m_1, \cdots, m_n) \in Z^n}$

is dense in G. We call such elements x_1, \dots, x_n 'generators of G'.

In the case n=1, G is called *monothetic* and for compact monothetic groups their characterization is stated in terms of their duals by Halmos and Samelson [1]. In this paper we have characterization of LCA polythetic groups by their structures and the smallest numbers of their generators. For the terminologies and notations in this note, see Rudin [2].

The author wishes to thank Professor M. Nagumo for his valuable suggestions.

§ 2. For a LCA polythetic group G let A(G) be the set of integers n > 0 such that there exists a homomorphic image of Z^n which is dense in G. Clearly A(G) has the smallest element, which we denote by s(G).

Now we state the characterization of compact polythetic groups.

The annihilator Λ of a closed subgroup H of G is the set of all $\gamma \in \Gamma$ (the dual group of G) such that $(x, \gamma) = 1$ for all $x \in H$. Λ forms a closed subgroup of Γ .

Lemma 1. For $i=1, \dots, n$, let H_i be the closure of the subgroup generated by $x_i \in G$, Λ_i be its annihilator, and let H be the subgroup of G generated by x_1, \dots, x_n . H is dense in G if and only if $\bigcap_{i=1}^{n} \Lambda_i = \{0\}$.

We denote by T the multiplicative group of all complex numbers of absolute value 1 with the usual topology (or equivalently the additive group of real numbers mod 2π) and by T_d the same group with the discrete topology.

Theorem 1. Let G be a compact abelian group. G is polythetic if and only if Γ is isomorphic to a subgroup of T_a^n .

Proof. If G is polythetic, G has generators x_1, \dots, x_n . Since the natural mapping α of T_d^n onto T^n is an algebraic isomorphism, the mapping $\gamma \rightarrow \alpha^{-1}((x_1, \gamma), \dots, (x_n, \gamma))$ is an isomorphism of Γ into T_d^n , be-

cause $\alpha^{-1}((x_1, \gamma), \dots, (x_n, \gamma)) = (1, \dots, 1)$ implies $(x_1, \gamma) = \dots = (x_n, \gamma) = 1$ and then $\gamma = 0$ (by Lemma 1).

Conversely let Γ be isomorphic to a subgroup of T_d^n , then by expressing α as $\alpha = (\alpha_1, \dots, \alpha_n)$, where α_i is a continuous homomorphism of T_d^n into T, we can choose $x_i \in G$ $(i=1, \dots, n)$ such that the restriction of α_i to Γ coinsides with x_i ; $\alpha_i(\gamma) = (x_i, \gamma)$ for all $\gamma \in \Gamma$. Since α is one to one, $(x_i, \gamma) = \dots = (x_n, \gamma) = 1$ if and only if $\gamma = 0$. Hence by Lemma 1, we have $\bigcap_{i=1}^n \Lambda_i = \{0\}$, where Λ_i is the annihilator of the closure of the subgroup generated by x_i . It follows that G is polythetic. Q.E.D.

Now let us recall that the dual group of a compact abelian group is discrete. Theorem 1 is advanced to the following

Theorem 2. A discrete group Γ is isomorphic to a subgroup of T_d^n if and only if its cardinal number is not greater than the power of the continuum and its torsion group is isomorphic to a subgroup of T_d^n .

Theorem 3. Let G be compact and G_0 be the connected component of 0 in G. G is polythetic if and only if G is separable and the totally disconnected factor group G/G_0 is polythetic. And then we have $s(G)=S(G/G_0)$.

The proofs of these Theorems for n=1 are given in [1] and the same proofs hold also for $n \ge 2$.

§ 3. In this section we consider a non-compact polythetic group G and its polythetic subgroups which are useful to characterize s(G).

We denote by $A \oplus B$ the direct sum of two groups A and B.

Theorem 4. Every LCA polythetic group G has an open subgroup G' with the following properties;

- i) G' is the direct sum of a compact group H and R^{l} $(l \ge 0)$,
- ii) $G = G' \oplus Z^k$ for some $k \ge 0$,
- iii) s(G) = s(G') + k.

Proof. Put s(G) = n and denote by \mathfrak{G} the dense subgroup of G generated by n elements $x_1, \dots, x_n \in G$. Since \mathfrak{G} is finitely generated we can assume x_1, \dots, x_n are independent.

By the principal structure theorem (see [2]), G has an open subgroup G_1 which is the direct sum of a compact group H_1 and R^i $(l \ge 0)$.

If there exists $x_j \in G_1$ $(1 \le j \le n)$ such that $m_0 x_j \in G_1$ for some m_0 $(\ne 0) \in Z$, then let us consider the subgroup $G_2 = \langle G_1, x'_j \rangle$ generated by G_1 and x'_j , where x'_j is an element in G chosen as follows; we express $m_0 x_j = h + r$ $(h \in H_1, r \in R^i)$ and let $x'_j = x_j - r/m_0$.

Since $m_0 x'_j \in H_1$, G_2 is a finite union of cosets of G_1 , hence is open, and by the same reason the subgroup $H_2 = \langle H_1, x'_j \rangle$ is compact. Now, G_2 is the direct sum of H_2 and R^i , because the existence of $m(\neq 0) \in Z$ and $h \in H_1$ such that $h + mx'_j \in R^i$ implies that $m_0(h + mx'_j) \in R^i$ and at the same time that $m_0(h+mx'_j) \in H_1$, which is a contradiction.

After finite steps we obtain an open subgroup $G_k = G'$ which is the direct sum of a compact group $H_k = H$ and R^i such that either $mx_j \in G'$ for all $m \in Z$ or $mx_j \in G'$ for all $m(\neq 0) \in Z$. It follows $G = G' \oplus Z^k$ for some $k \ge 0$ and s(G) = s(G') + k. Q.E.D.

Theorem 5. Let G be a LCA polythetic group which is the direct sum of a compact group H and R^{i} (l>0). Then G has a discrete subgroup D such that

- i) D is isomorphic to Z^{l} ,
- ii) the factor group G/D is compact,
- iii) s(G) = s(G/D) + l.

Proof. Put s(G) = n and as in the proof of Theorem 4, let \mathfrak{G} be a dense subgroup generated by independent elements x_i $(1 \leq i \leq n)$.

 x_i is written as $x_i = a_i + b_i$ $(a_i \in H, b_i \in R^l)$ $1 \leq i \leq n$.

Since the subgroup $\langle b_1, \dots, b_n \rangle$ generated by $b_1, \dots, b_n \in R^l$ is dense in R^l , as vectors in R^l , $\{b_1, \dots, b_n\}$ contains l linearly independent vectors, which we say b_1, \dots, b_l . Put $D = \langle y_1, \dots, y_l \rangle$.

Since $\langle b_1, \dots, b_l \rangle$ is isomorphic to Z^l in R^l , D is discrete and isomorphic to Z^l in G. We show G/D is compact. Let W be a compact neighborhood of 0 in R^l such that $R^l \subset W + \langle b_1, \dots, b_l \rangle$. Then $G \subset (H \oplus W) + D$. Since $H \oplus W$ is compact we have G/D is compact. Further the structures of \mathfrak{G} and D show that s(G) = s(D) + s(G/D). Q.E.D.

Theorem 5 does not mention any relation between s(G) and s(H). However in the special cases, we can obtain a relation by Theorem 5.

Theorem 6. If H is compact connected separable and if G=H $\oplus R^{l}$, then we have $s(G)=s(H) \lor (l+1)$, where $a \lor b=\max\{a, b\}$.

Proof. The assumptions on H imply s(H)=1 (see [1]). Hence $s(H) \lor (l+1)=l+1$ holds for any integer l>0. We show s(G)=l+1.

By Theorem 5 we can choose a discrete subgroup D such that G/D is compact and s(G)=s(G/D)+l. Since G/D is connected and separable we have s(G/D)=1. It follows s(G)=l+1. Q.E.D.

Theorem 7. If H is compact separable and is a direct sum of a connected group H_0 and a totally disconnected group H_1 , and if $G=H \oplus R^i$, then we have $s(G)=s(H) \vee (l+1)$.

Proof. We write G as $G = H \oplus G_0$, where $G_0 = H_0 \oplus R^l$. Since $s(H) = s(H_0 \oplus H_1) = s(H_1)$ by Theorem 3 and $s(G_0) = l+1$ by Theorem 6, we have

$$s(G) \geq s(H_1) \vee s(G_0) = s(H) \vee (l+1).$$

Put $m = \min \{s(H_1), s(G_0)\}$ and $n = \max \{s(H_1), s(G_0)\}$. In order to show $s(G) \leq s(H_1) \lor s(G_0)$, we say that for some $x_1, \dots, x_n \in G$, $\mathfrak{S} = \langle x_1, \dots, x_n \rangle$ is dense in G. First we assume $m = s(H_1)$. Let a_1, \dots, a_m be

No. 1]

R. TAKAMATSU

[Vol. 52,

generators of H_1 and b_1, \dots, b_n be generators of G_0 . Define $x_j \in G$ by $x_j = a_j + b_j$ if $1 \le j \le m$

$$=b_{j} \qquad \text{if } m+1 \leq j \leq n.$$

Let $\gamma \in \Gamma$ be such that $\gamma = 1$ on \mathfrak{G} . γ can be uniquely written as $\gamma = \gamma' + \gamma''$ where $\gamma' \in \Gamma'$ (the dual group of H_1) and $\gamma'' \in \Gamma''$ (the dual of G_0). Hence we have

$$\begin{array}{ll} (x_j,\gamma) = (a_j,\gamma')^k (b_j,\gamma'')^k = 1 & \text{for } 1 \leq j \leq m \text{ and } k \in Z, \\ = (b_j,\gamma'')^k = 1 & \text{for } m+1 \leq j \leq n \text{ and } k \in Z. \end{array}$$

Since γ' has finite order q, putting k = q we have $q\gamma'' \in \bigcap_{i=1}^{n} \Lambda_i$, where Λ_i is the annihilator of the closed subgroup generated by b_i . It follows by Lemma 1 $q\gamma''=0$. But since γ'' has infinite order, γ'' must be 0. Hence we have

$$(a_i, \gamma')^k = 1$$
 for $1 \leq j \leq m$ and $k \in \mathbb{Z}$.

Again by Lemma 1, we get $\gamma'=0$. We have shown that $\gamma=0$, that is, \mathfrak{G} is dense in G. The proof for $m=s(G_0)$ is obtained similarly.

Q.E.D.

References

- P. Halmos and H. Samelson: On monothetic groups. Nat. Acad. Sci. US., 28, 254-258 (1942).
- [2] W. Rudin: Fourier Analysis on Groups. Intersci. Pub. (1960).