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1. Let G be a locally compact abelian (LCA) group and Z be the
additive group of integers. We say G is polythetic if it has a dense
subgroup which is a homomorphic image of Z. In other words G is
to contain n elements x, ..., Xn such that the subgroup

{mx+... +mx (m, ..., m) e Zn}
is dense in G. We call such elements x, ..., x ’generators of G’.

In the case n=l, G is called monothetic and for compact mono-
thetic groups their characterization is stated in terms of their duals by
Halmos and Samelson [1]. In this paper we have characterization of
LCA polythetic groups by their structures and the smallest numbers of
their generators. For the terminologies and notations in this note,
see Rudin [2].

The author wishes to thank Professor M. Nagumo for his valuable
suggestions.

2. For a LCA polythetic group G let A(G) be the set of integers
n0 such that there exists a homomorphic image of Z which is dense
in G. Clearly A(G) has the smallest element, which we denote by s(G).

Now we state the characterization of compact polythetic groups.
The annihilator A of a closed subgroup H of G is the set of all 7 e F

(the dual group of G) such that (x, )= 1 for all x e H. A forms a closed
subgroup of F.

Lemma 1. For i-----1, ..., n, let H be the closure of the subgroup
generated by x e G, A be its annihilator, and let H be the subgroup

of G generated by xl, ..., xn. H is dense in G if and only if A={0}.
i=l

We denote by T the multiplicative group of all complex numbers
of absolute value I with the usual topology (or equivalently the additive
group of real numbers mod 2z) and by T the same group with the
discrete topology.

Theorem 1. Let G be a compact abelian group. G is polythetic

if and only if 1" is isomorphic to a subgroup of T.
Proof. If G is polythetic, G has generators x, ., x. Since the

natural mapping a of T onto T is an algebraic isomorphism, the
mapping 7-a-((x, ), ..., (x, 7)) is an isomorphism of/" into T, be-
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cause -1((xl, ,), ..., (xn, ’))--(1, ..., 1) implies (xl, )--... ----(xn, )--1
and then .--0 (by Lemma 1).

Conversely let F be isomorphic to a subgroup of T, then by ex-
pressing as --(, ..., ), where is a continuous homomorphism
of T into T, we can choose x e G (i-1, .., n) such that the restriction
of to/ coinsides with x; (,)-(x, ,) for all , e F. Since is one
to one, (x, )--...--(x, ,)--1 if and only if ,--0. Hence by Lemma

1, we have ( A={0}, where A is the annihilator of the closure of the
i--1

subgroup generated by x. It follows that G is polythetic. Q.E.D.
Now let us recall that the dual group of a compact abelian group

is discrete. Theorem 1 is advanced to the following

Theorem 2. A discrete group F is isomorphic to a subgroup of
T if and only if its cardinal number is not greater than the power of
the continuum and its torsion group is isomorphic to a subgroup of T.

Theorem :. Let G be compact and Go be the connected component
of 0 in G. G is polythetic if and only if G is separable and the totally
disconnected factor group G/Go is polythetic. And then we have
s(G)=S(G/Go).

The proofs of these Theorems for n--1 are given in [1] and the
same proofs hold also for n>=2.

:. In this section we consider a non-compact polythetic group
G and its polythetic subgroups which are useful to characterize s(G).

We denote by A@B the direct sum of two groups A and B.
Theorem 4. Every LCA polythetic group G has an open subgroup

G’ with the following properties;

i) G’ is the direct sum of a compact group H and R (l>=O),
ii) G=G’@Z for some k_ O,
iii) s(G)-- s(G’) / k.
Proof. Put s(G)--n and denote by (R) the dense subgroup of G

generated by n elements Xl, ..., x e G. Since (R) is finitely generated
we can assume x, ..., x are independent.

By the principal structure theorem (see [2]), G has an open sub-
group G which is the direct sum of a compact group H and R (l>__0).

If there exists x e G (l_]_<_n) such that mox e G for some m0
(: 0) e Z, then let us consider the subgroup G=(G, x.) generated by

where is an element in G chosen as follows; we expressG and x, x
mox as mox=h+r (h e H, r e R) and let x’=x--r/mo.

Since mox’ e H, G. is a finite union of cosets o G, hence is open,
and by the same reason the subgroup H--(H, x’ is compact. Now,
G is the direct sum of H. and R, because the existence of m(4: 0) e Z
and h e H such that h+mx e R implies that mo(h/mx’) e R and at
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the same time that mo(h+mx’) e H, which is a contradiction.
After finite steps we obtain an open subgroup G--G’ which is the

direct sum of a compact group H H and R such that either mx e G’
for all m e Z or mx G’ for all m(0) e Z. It follows G=G’Z for
some k>=0 and s(G)--s(G’)/ k. Q.E.D.

Theorem 5. Let G be a LCA polythetic group which is the direct
sum of a compact group H and R (lO). Then G has a discrete sub-
group D such that

i) D is isomorphic to Z,
ii) the factor group G/D is compact,

iii) s(G)--s(G/D) / 1.
Proof. Put s(G)--n and as in the proof of Theorem 4, let (R) be a

dense subgroup generated by independent elements x (1__< i =< n).
xt is written as xt=at+ bt (at e H, b e R)
Since the subgroup (bl, .., bn} generated by bl, ., bn e R is dense

in R, as vectors in R, {b, ..., b} contains linearly independent
vectors, which we say b, ..., b. Put D=(y, ..., y}.

Since (b, ..., b} is isomorphic to Z in R, D is discrete and iso-
morphic to Z in G. We show G/D is compact. Let W be a compact
neighborhood of 0 in R such that RW+(b,..., b}. Then G(H
W)+D. Since HW is compact we have G/D is compact. Further
the structures of (R) and D show that s(G)=s(D)+s(G/D). Q.E.D.

Theorem 5 does not mention any relation between s(G) and s(H).
However in the special cases, we can obtain a relation by Theorem
5.
Theorem 6. If H is compact connected separable and if G=H

R, then we have s(G)=s(H)/(l+l), where a/b=max {a, b}.
Proof. The assumptions on H imply s(H)=l (see [1]). Hence

s(H) /(1+ 1) + 1 holds for any integer 0. We show s(G) + 1.
By Theorem 5 we can choose a discrete subgroup D such that G/D

is compact and s(G)=s(G/D)+ 1. Since G/D is connected and separable
we have s(G/D)-I. It ollows s(G)=l+l. Q.E.D.

Theorem 7. If H is compact separable and is a direct sum of a
connected group Ho and a totally disconnected group H, and if G=H
R, then we have s(G)= s(H)/ (1 + 1).

Proof. We write G as G=HGo, where Go=HoR. Since s(H)
=s(HoH)=s(H) by Theorem 3 and s(Go)=l+l by Theorem 6, we
have

s(G) >= s(H)V s(Go) s(H) / (1 + ).
Put m=min {s(H), s(G0)} and n=max {s(H), s(G0)}. In order to

show s(G)<=s(H)/s(Go), we say that for some x,..., x
..,x} is dense in G. First we assume m=s(H). Let a,...,a be
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generators of H and b, ..., b be generators of Go. Define x e G by

x=a+b if

=b if m+
Let e/ be such that --1 on (R). can be uniquely written as

7-----7’-" where ’ e F’ (the dual group of H) and 7" e F" (the dual of
Go). Hence we have

(x, 7)--(a, 7’)(b, 7")---1 for l<=]<=m and/ e Z,
=(b, 7")=1 for m+ l<=]<=n and k e Z.

Since r’ has finite order q, putting k=q we have qr" e A, where
i=l

A is the annihilator of the closed subgroup generated by b. It follows
by Lemma 1 qr"=0. But since " has infinite order, r" must be 0.
Hence we have

(a, T’)=I for l<]<m= and/ e Z.
Again by Lemma 1, we get 7’=0. We have shown that 7=0, that is,
(R) is dense in G. The proof for m--s(Go) is obtained similarly.

Q.E.D.
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