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1. Introduction. Let X be a compact Hausdorff space and be
a regular finite measure on X. Let (t) be a continuous strictly in-
creasing function of =>0 for each x e X with (0)=0 and lim (x)

+ c. We assume further that for a fixed t >0, the function (t) of
x e X is always measurable and
(A) 0< inf (t)__< sup (t) < + c.

xX

We define a so-called N-function" #(u)----[: (t)dt, x e X. Then,

we see easily that #(u) is a convex continuous function of u>__0 for a
fixed x and a measurable function of x for a fixed u. We shall consider
the function space Lo(X) of measurable functions which is a so-called
0rlicz-Nakano space. Since #(]f(x)l) is a non-negative measurable
function of x e X for all measurable function f (with respect to ) by
assumption, we can define a functional

x (If(x)I)d2(x).(B) Mob(f)

Let us define a function space of measurable functions

Lo.(X) {f measurable and M(cf)< + c for some c> 0}.
Now, we shall consider the complementary function V(u) for (u)

such that
sup u (=;1(0)

u
rx(U) =Jo +x(s)ds for xe X.

We see by assumption +(t) (resp. (u)) has the same properties
as (t)(resp. #(u)). In our discussion, I1" 11, means the norm defined
in [3]. In [3], this norm is called the first modular norm.

Corresponding to an equi-measurable transformation in X, L and
0rlicz spaces are of importance, since the norm of the function in these
spaces is invariant under the transformation. But, in many cases
which are not expected uniform properties at each point in X and will
be occurred in applications, it is natural to consider the spaces L,(X),
since the property of functions may be changeable under the trans-
formation. H. Nakano considered more wider sense than that of ours.



No. 1] Norm Properties on Function Spaces 11

But we shall consider here the space L(X) more restricted form as
above, in order to avoid non-essential discussion. In this note, we
shall consider SzegS’s type theorem in function space L(X), in order
to investigate the norm on L(X).

2. Main results. Let E be a subset of the linear space C(X) of
continuous real-valued functions on X, which satisfies

(i) c /f e E for any real constant c and f e E,
(ii) E is uniformly dense in C(X).
We shall use the letter/, for a positive regular Borel measure on

X such that/(X)= I.
Lemma 1. Suppose f e L(X), ]f[l, and the integral

xlog
]f(x)] dz(x) is definite even if either finite or infinite. Then, for

an arbitrary positive number , there exists a function g e E, such that

],exp g]]l and I g(x)d(x)Ilog ]f(x)]d(x)--. (In he case

log ]f(x)] dz(x) + it means that for positive number we canany
x

find gwith Ix g(x)dg(x) >a.)
Lemma 2. If g is not absolutely continuous with respect to 2,

then for any positive number p there exists a functionf e L, such that

1, and [ log f(x) dz(x) p.
d

For each fixed x e X, the function t(t), t0 is a strictly increas-
ing continuous function with the range [0, + ), so it has the inverse
function defined on [0, + ). Denoting it by I, it follows that I is a
continuous increasing function with I;(t)=t(t), s=I(s)(I(s)),
t, sO. I(f(x)) is a Borel measurable function on X for any Borel
function f on X. Furthermore, let f be a 2-integrable non-negative

function such that 0 <[ f(x)d2(x) then the function r(a)=[ ((I(a
Jx Jx

f(x)))d(x), 0 is a strictly increasing continuous function with the
range [0, + ). Hence it holds the first half of the following lemma,
by the intermediate vMue theorem.

Lemma 3. Let be absolutely continuous with respect to . Then
there is a unique0 such that

k d2 /

while log I(c dg(x)dz(x) is either finite or equals to + for any
x k d /

cO. Here the notation d means the usual Radon-Nikodym

derivative.
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Theorem 1. (1) If l is absolutely continuous with respect to
then there exists a unique0 such that

in {,lexpf,, f E, f(x)d/(x)>O}
= exp (--logl(- (x))d/(x)).

(2) If/ is not absolutely continuous with respect to , then

in (llexp fll; f e E, f(x)d/(x)>=O} =O.
Proof. Firstly, we note that

inf {llexpfll f e E, x f(x)d/(x)>O}
--exp (--sup { f(x)dp(x);fe E,

=exp (--sup log ]f(x), d/(x);
by the definition of E, and by Lemma 1. Next, let h be the function

\ d2 /’
where a>0 is the number determined in Lemma 3. Then,
and

$1113
x ) dx

Finally, combining this equality with the preceding equality, it follows

inf {llexpfll f e E, xf(x)d/(x)>O}
=exp (--sup {;x log If(x)[ dp(x);

= exp (--x logl(- (x))d/(x)).
It is an obvious matter in the case when/ is not absolutely continuous
with respect to 2, by Lemma 2.

3. Logmodula algebra. Let A be a logmodular algebra on X.
By Ao we will denote the kernel :-(0) or a multiplicative linear unc-
tional :0 on A. Since A is a logmodular algebra, every : has a unique
representing measure m, for which the Jensen’s equality holds, i.e.

log If f(x)dm(x) =f log[f(x), dm(x)forf A-.
Id2 .)x

Theorem 2. (1) If m is absolutely continuous with respect to
then there exists >0 such that

inf {lll+fl[ f e A0}= exp (--;x log I((x))dm(x)).
(2) If m is not absolutely continuous with respect to , then

inf {1[ 1 +f[[ f e Ao}= O.
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Proof. Set E={log If I; f e A-} where A- is the family of in-
vertible elements of A. Then, E is a subset of C(X) satisfying (i) and
(ii). By the Theorem 1, we obtain

I=in (,If], f e A-1, x log ,f(x), dm(x)>=O}
= exp (--Ix log I(o ddm2 (x))dm(x))

for a0. Put F=[log Ill; f e A}. Then F is a subset of the linear
space o all Borel measurable unctions on X, and satisfies (i) and (ii).
Hence, as it is shown, the Lemmas and Theorem 1 or F are valid too.
The number a depends only on the measure m, hence we obtain

J=inf {,Ifl, f e A, Ix log ,f(x), dm(x)>=O}
=c exp (--Ix log I(o-ddm2 (x))dm(x)),

in particular J I.
Let A={i+f;YeAo}, A:={cy; Icl>=i, f eAd.
Since m is a Jensen measure, we obtain

inf {11 f I] f e n} inf {11 f I] f e Ai }
and

J__<inf {]lfll f e A?} <__I,
which give

in { II+f,, fe A0}=c exp (--Ix log I(o-dd (x))dm(x)).
If m is not absolutely continuous with respect to 2, Lemma 2 and

the proof of the Theorem I imply

J=I=exp (--sup {Ix log ]f(x)] dm(x);llf 1,1}) =0
q.e.d.
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